DERP Forum

Strengthening Relationships with our Regulatory Partners

St. Louis, Missouri May 8-9, 2019

Munitions Response 101/201

DERP Forum May 7, 2019

Purpose of Session

- Overview of the current terminology, technology, and approaches to investigate and clean up munitions response sites (MRSs)
- This session will cover:
 - Types of Munitions and Munitions Hazards
 - Detection Technologies
 - Quality Programs
 - New Risk Methodology
- Provide insights into regulatory oversight considerations

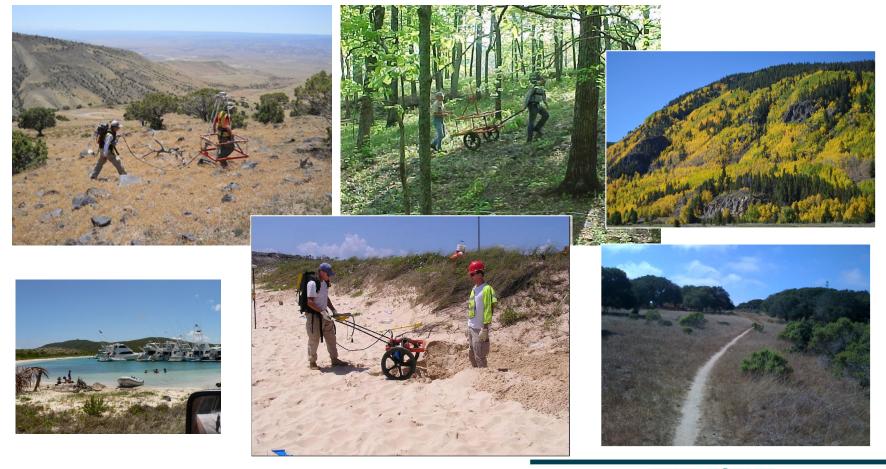
Military Munitions Response Program Overview What is MMRP?

- Defense Environmental Restoration Program (DERP)
 - Installation Restoration Program (IRP)
 - Military Munitions Response Program (MMRP)

• DoD developed the MMRP Inventory in 2001 (10 USC 2710)

- Unexploded ordnance (UXO)
- Discarded military munitions (DMM)
- Munitions constituents (MC)

MMRP addresses Munitions Response Areas (MRAs) and Munitions Response Sites (MRSs) on:


- Active Installations
- Base Realignment and Closure (BRAC) Locations
- Formerly Used Defense Sites (FUDS) Properties

Military Munitions Response Program Overview How Munitions are Unique

- Acute vs. chronic risks
- Unique explosive hazard
- Individual discrete items, not a plume
- Direct correlation of hazard to exposure

Military Munitions Response Program Overview Diversity of MRSs

Geology, Terrain, Vegetation, Size, Land Use

Military Munitions Response Program Overview Types of Munitions and Munitions Hazards

> Brian Jordan Geotechnical Engineer U.S. Army Corps of Engineers Brian.D.Jordan@usace.army.mil

What Are Munitions?

Munitions Include:

Grenades

Artillery & Mortar Rounds

Bombs

Small Arms Ammunition

What is UXO?

What is Unexploded Ordnance?

- Munitions (ammo) that failed to function properly;
- Can be of any type;
- May just be a component of a munition (e.g., fuse or exposed explosive fill).

Munitions Vary in Appearance

Munitions are dangerous regardless of appearance:

- Munitions type, shape, size, age, or condition don't matter.
- Flares, simulators, and blasting caps are all dangerous.
- War souvenirs can be dangerous.

Characteristics to Consider

Key considerations when evaluating the hazards of munitions

- Practice vs. High Explosive
- Severity
- Sensitivity

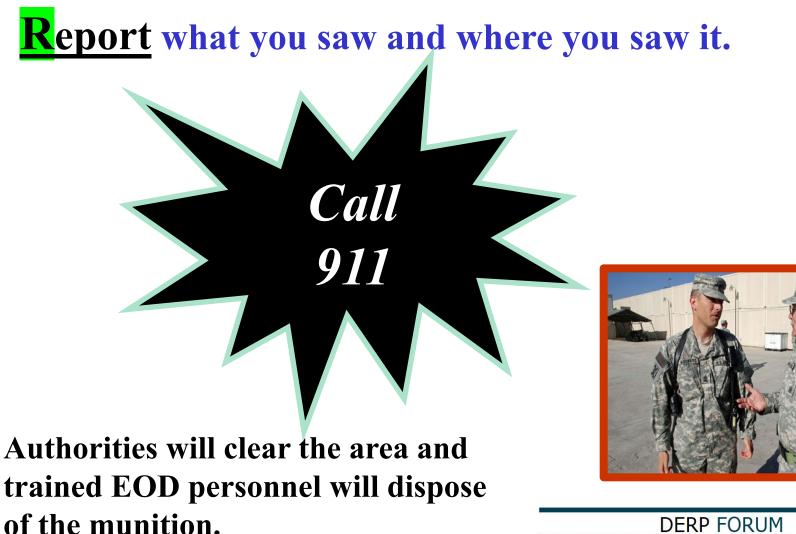
What To Do If You Encounter Munitions

Recognize that munitions are dangerous.

Munitions may:

- not look like a bullet or bomb.
- be shiny or rusty.
- be clean or dirty.
- look harmless, but are dangerous

Regardless of whether a munition has been moved, it may still explode. In fact, used munitions <u>can be more dangerous</u> than new.



Retreat and carefully leave the area.

- Do not approach, touch, move, or disturb the munition, but carefully leave the area the same way you entered it.
- In remote surroundings, mark the general area where you encountered a munition so local authorities can locate it. DO NOT go closer to a munition when marking the area.

What To Do If You Encounter Munitions

Additional Resources

3Rs.mil

- General Educational Resource Materials (Posters, Safety Guides, Fact Sheets, Videos etc.)
- Gallery of Photos
- UXO Incidents
- Contact Us Page
- Safety Clubhouse for Kids

QUESTIONS

Military Munitions Response Program Overview Types of Munitions and Munitions Hazards

Jeff Swanson State Remedial Project Manager Colorado Debarment of Health and Environment jeffrey.swanson@state.co.us

Detection Technologies Acknowledgement & Credits

COLORADO

Department of Public Health & Environment

Detection Technologies Geophysical Technology Overview

• Used to detect subsurface metal items that could be military munitions or explosives of concern (MEC) or evidence of MEC

During Characterization

- Detect anomalies
- Estimate anomaly densities
- Distinguish areas of high anomaly density (HD areas) from areas of low anomaly density (LD areas)

During Removal/Remedial Action

- Detect anomalies
- Classify anomaly sources (targets of interest vs. non-targets of interest)

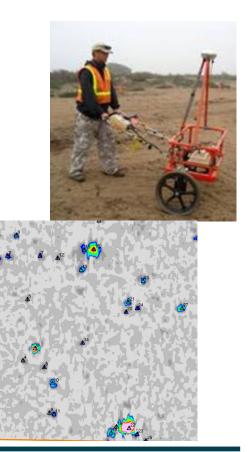
Detection Technologies Geophysical System Types

- Analog handheld 'magnetometers'
- 'Traditional' Digital Geophysical Mapping (DGM)
- Advanced Geophysical Classification (AGC)

Detection Technologies Analog Magnetometers

Commonly referred to as 'Mag and dig' (May also use All-Metals detectors)

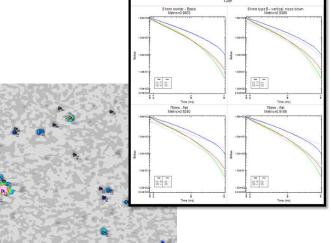
- + Used in difficult terrains (e.g., dense vegetation)
- No digital record
- Not conducive to robust quality system controls

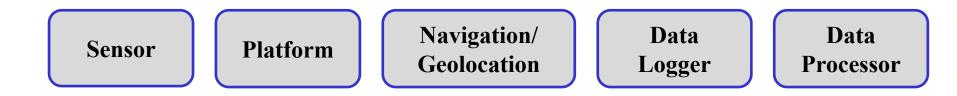


Detection Technologies Traditional Digital Geophysical Mapping

Electromagnetic induction (EMI) technologies most-commonly used

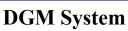
- + Provides digital record
- + Conducive to quality system controls
- + Better detection performance

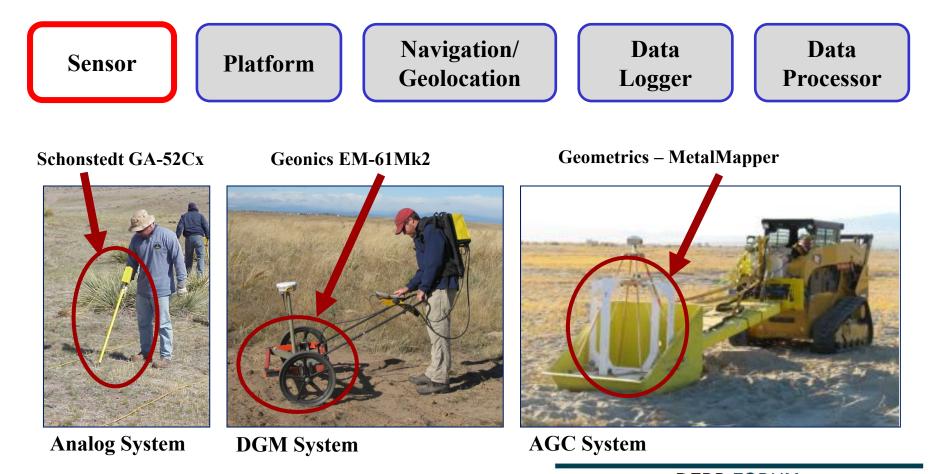


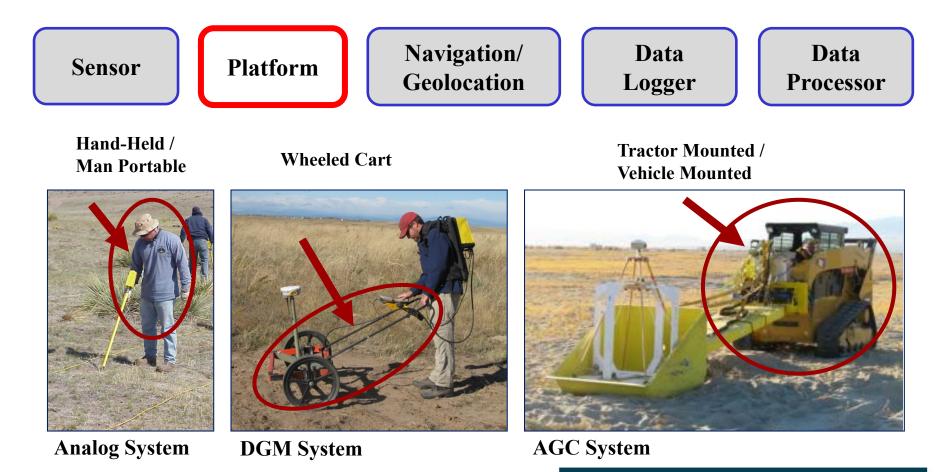

Detection Technologies Advanced Geophysical Classification

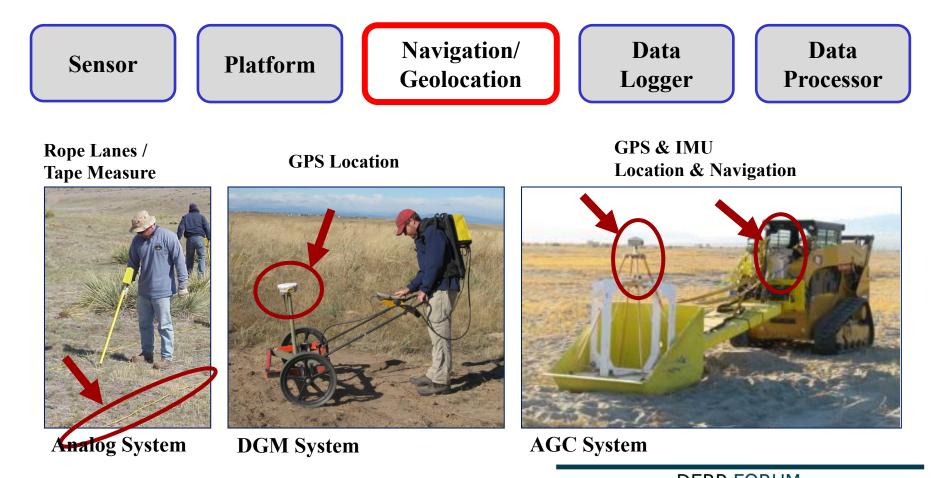
Multi-axis, purpose built advanced EMI systems

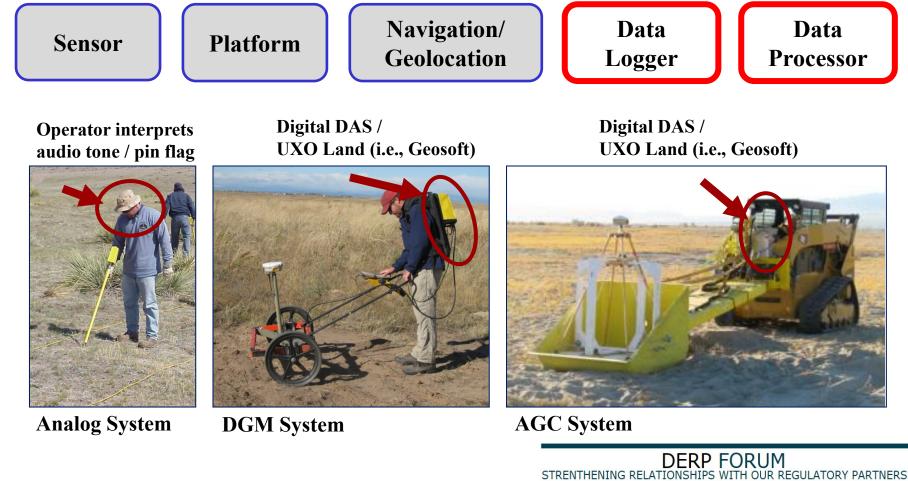
- + Provides digital record
- + Reduces unnecessary digs
- + Mature quality management system
 - provides realistic prediction / assessment of performance
- Not suitable for all sites
- Steeper learning curve



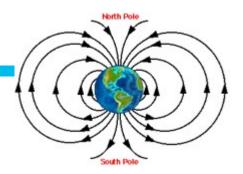




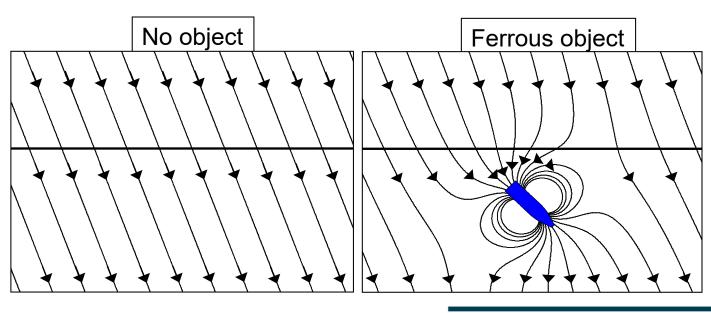

AGC System


Analog System

Detection Technologies Example Deployments

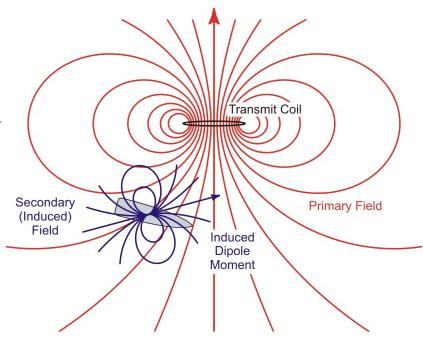


Detection Technologies Munitions Detection


- Munitions can be detected because most contain metal
- Two categories of metal detectors
 - Magnetometers can detect presence of <u>ferrous</u> metal
 - Electromagnetic induction can detect presence of both <u>ferrous and</u> <u>non-ferrous</u> metal

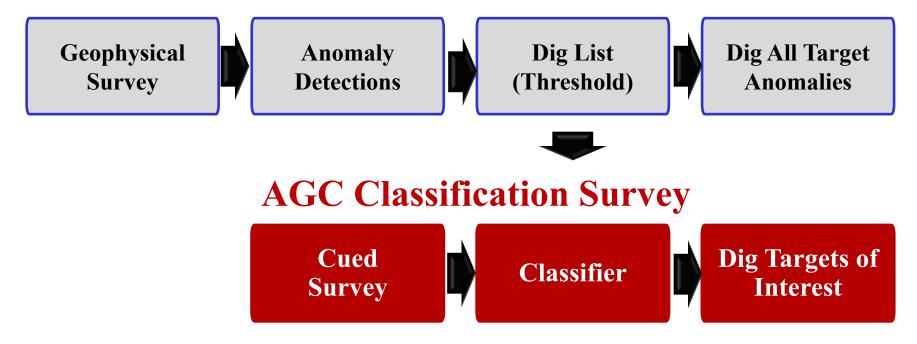
Detection Technologies Munitions and Magnetism

- Munitions made of ferrous metal (steel) are detectable with magnetometers
- The Earth's magnetic field becomes distorted in the presence of ferrous metal



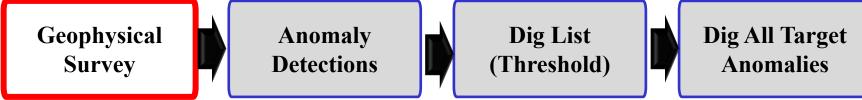
Detection Technologies Munitions and Electromagnetics

- EMI can detect munitions made of both ferrous and non-ferrous metal
- Typical Electromagnetic Induction Sensor


• EMI Basics:

- Primary Field from Transmit Coil excites Eddy Currents in Object
- Receive Coil measures Induced Field due to Eddy Currents

Detection Technologies Basic Survey Project Steps

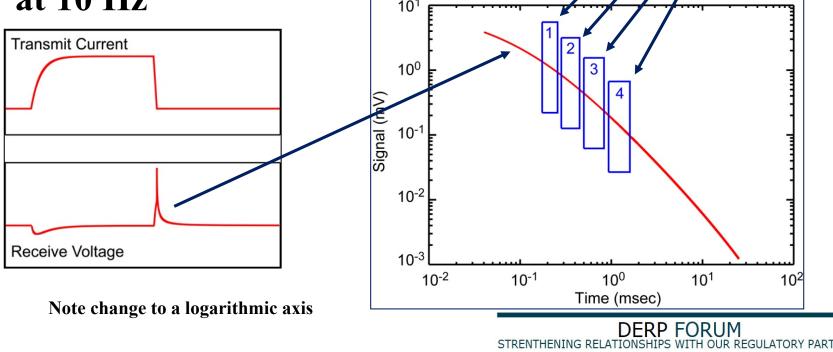

Traditional DGM Detection Survey

Detection Technologies

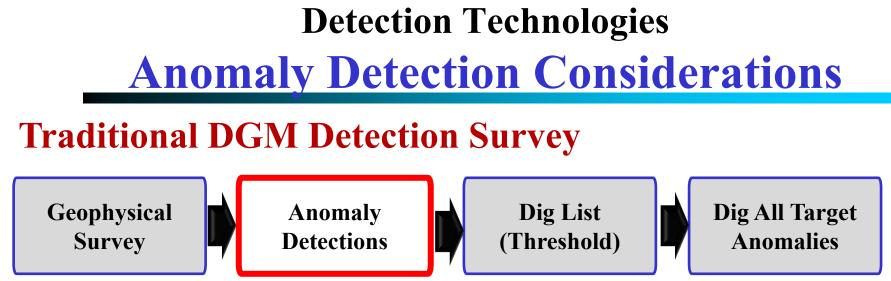
Geophysical Survey Considerations

Traditional DGM Detection Survey

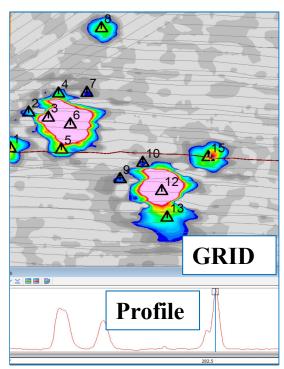
- Surface clearance
- DGM Mapping
 - Area or Transects
 - Sensor / Platform
 - Geolocation (GPS)
 - Line Spacing
 - Sensor Height

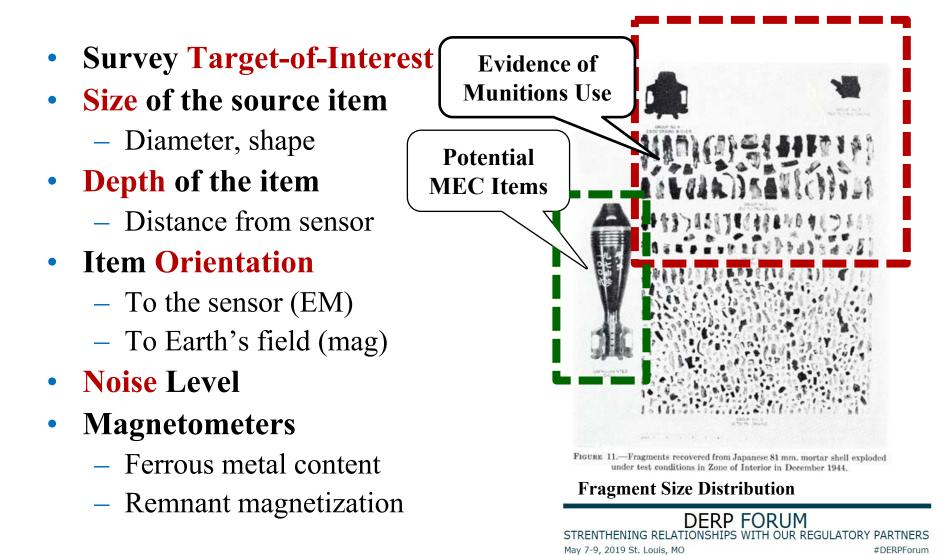

Detection Technologies EM61-MK2 Sensor Data

 The standard EM61 averages response over four time windows or gates following the primary field cutoff



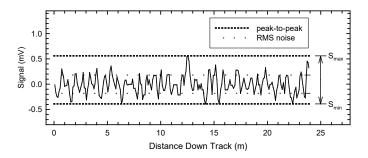
#DERPForum


• EM61MK2 data typically collected at 10 Hz


May 7-9, 2019 St. Louis, MO

- EMI sensor data combine with precise positioning (GPS or RTS) to provide digital geophysical maps
- **'Anomalies'** are selected from grid or profile representations
- DGM survey 'Targets of Interest (TOI)' are anomalies above a target anomaly selection criteria (i.e., Threshold)

Detection Technologies Primary Factors Impacting Detection


Detection Technologies Signal-to-Noise Ratio

• Noise is the detector's nemesis

- Intrinsic noise is internal to the instrument and generated by circuitry, connections, etc.
- Background noise is external to the instrument and generated by geologic sources, electrical transmission lines, etc.
- The signal-to-noise ratio (SNR) of desirable to undesirable (or total) energy can be expressed mathematically as S/N or S/(S+N)
- Noise expressed as Peak-to-Peak or RMS

Detection Technologies Example of EM Noise

- Detectability limited by noise fluctuations in the sensor output
- Noise measured as Peakto-Peak or RMS
- Reliable anomaly detection requires peak signal 5-6 times RMS noise level

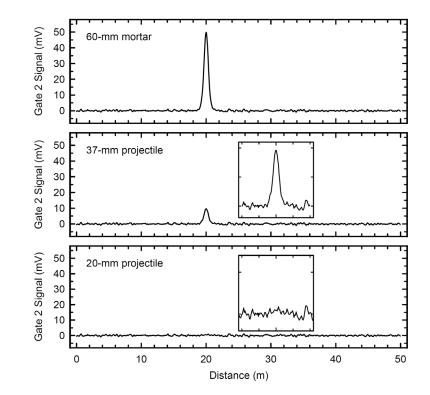
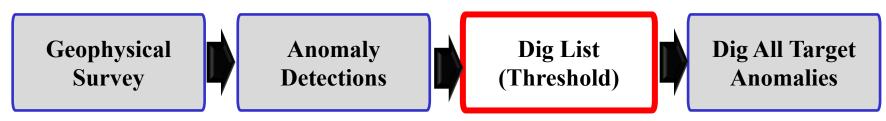
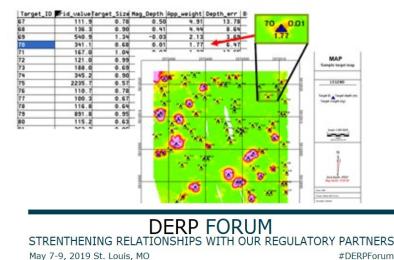
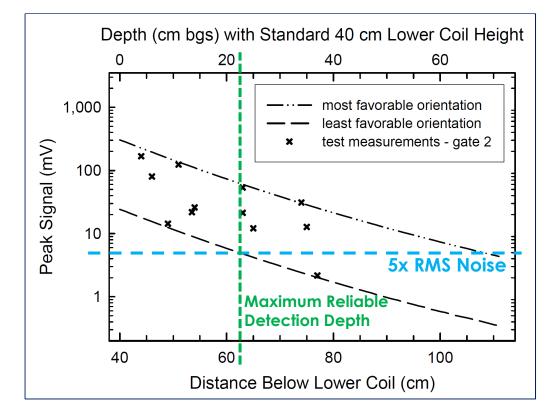



Figure 2-4. Example signal plus noise traces: (top) 60-mm mortar, (center) 37-mm projectile, (lower) 20-mm projectile. All targets are buried at 26 cm depth oriented horizontal across the survey track direction. The peak-to-peak noise level is 2 mV, and the RMS noise level is 0.35 mV.


ESTCP: Final Report Geophysical System Verification, July 2009

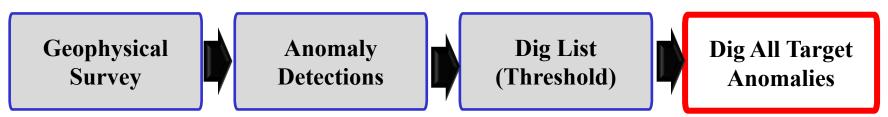
Detection Technologies Target-of-Interest Considerations

Traditional DGM Detection Survey



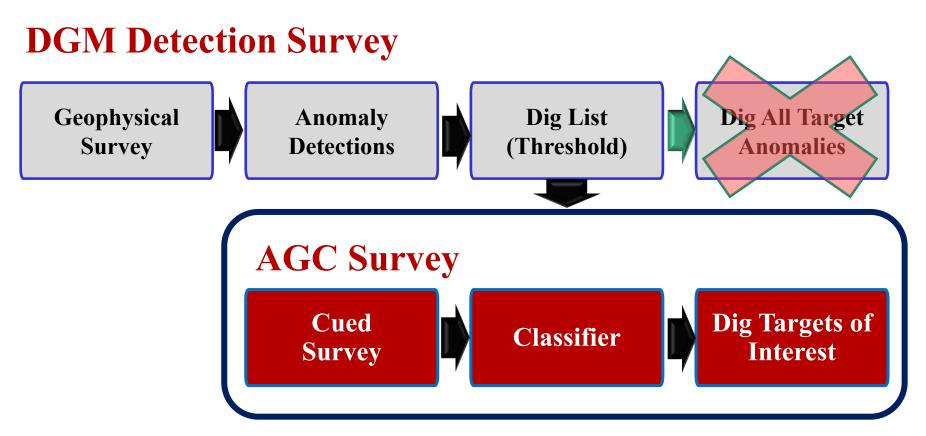
- **DGM TOI** selection criteria (i.e., Threshold)
- Characterization (Investigation) Survey
 - TOI = Evidence of munitions use (MD)
 - 5-7 x RMS Noise
- **Removal** Action:
 - TOI = Smallest Munition of Interest
 - Sensor Response Curves

Detection Technologies Sensor Response Curves


- Establish threshold for TOI selection
- Estimate reliable detection depths for TOI
- Factors
 - Sensor/Channel
 - Munition Item
 - Orientation of item to sensor
 - Noise levels

Sensor Response Curve - EM61-MK2 response curve for small Industry Standard Object (ISO; 1"x4" steel pipe nipple).

Detection Technologies Target-of-Interest Considerations


Traditional DGM Detection Survey

- All DGM TOI locations investigated
- Reacquire TOI location
- UXO qualified personnel investigate location (dig)
- Anomaly source visually identified

Detection Technologies Advanced Geophysical Classification

Caution: Before you can classify, you must still detect.

Detection Technologies <u>Big Picture – AGC Survey</u>

Technology Acceptance & Adoption

- It works, really good!
- Not a "silver bullet", not appropriate everywhere

Quality Systems is the key to success

- Accreditation is a game changer
- QAPP provides the quality framework
- Sustain with policy, training, and implementation

Implementation & Oversight

- Focus on decision points
- Classification is hands-on technology
- Requires active stakeholder participation

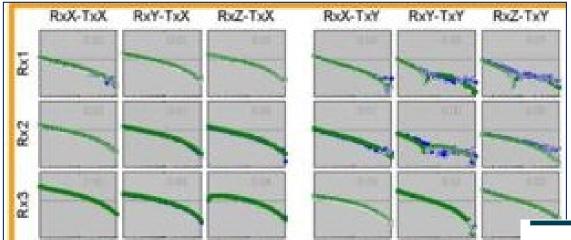
Detection Technologies Advantages of AGC

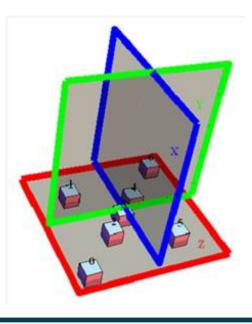
- Fewer digs
 - Reduced costs
 - Less environmental impacts
 - Less disruption to local communities
- Technical benefits

- Reduces cost-per-dig with greater accuracy in source locations
- Increased safety during digs (likely source & depth)
- AGC data provides opportunity for QC of dig results
- Associated quality management practices provide defensible results and realistic understanding of residual hazard

Detection Technologies How Do We Classify?

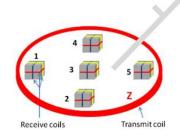
- Visually, we use physical attributes such as size and shape
- Because we cannot see buried objects, we must rely on attributes determined from geophysical data




Detection Technologies Advanced EMI Sensors

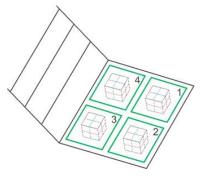
Designed for classification

- Multi-axis transmit/receive coils for complete target illumination
- Measures complete decay signal
- Fixed arrays for precise positioning

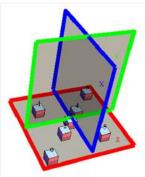


Detection Technologies What do Advanced EMI Sensor looks like

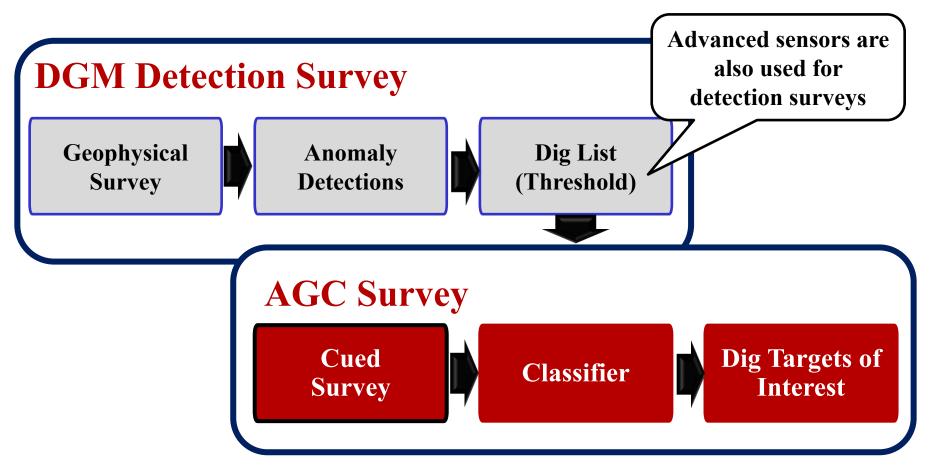
• Multiple coils measure the complete response of buried items (spatially and temporally)



Person-portable

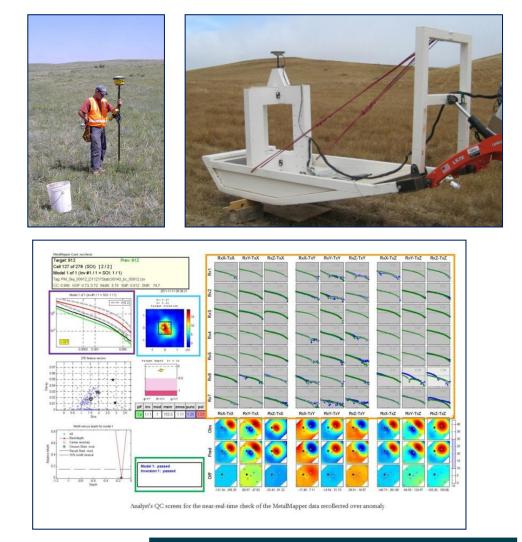


Cart-mounted



Vehicle-towed

Detection Technologies Advanced Geophysical Classification



Caution: Before you can classify, you must still detect.

Detection Technologies AGC Cued Survey Considerations

Cued Survey

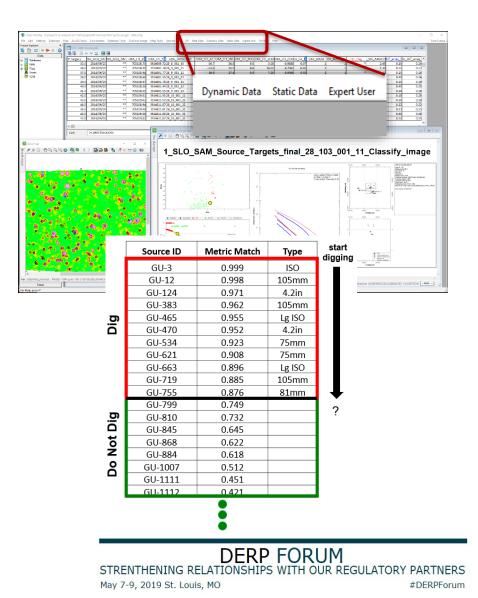
- Reacquire targeted anomaly locations
- Cued Survey of each targeted anomaly location with advanced sensor

DERP FORUM STRENTHENING RELATIONSHIPS WITH OUR REGULATORY PARTNERS May 7-9, 2019 St. Louis, MO #DERPForum

Dig Targets

of Interest

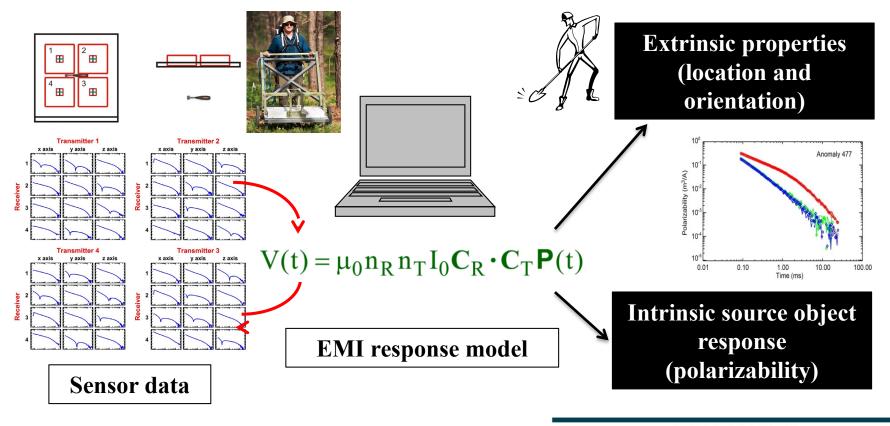
Parameter Extraction

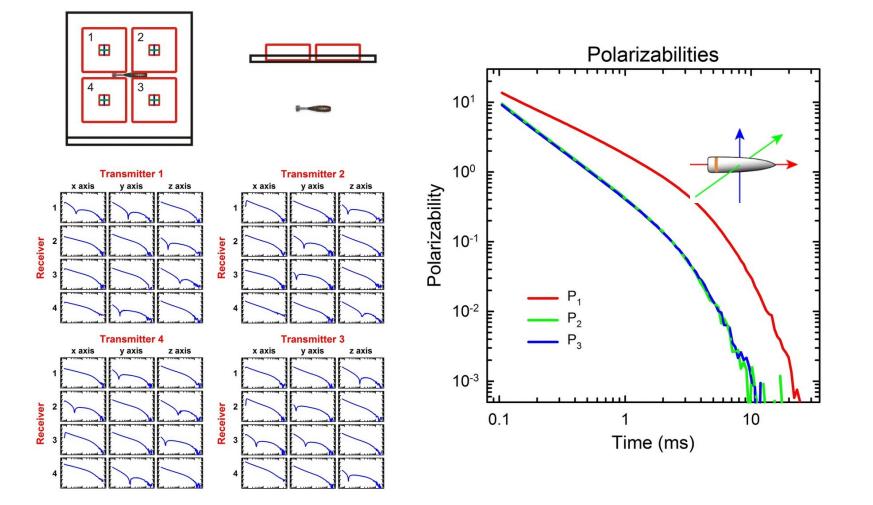

• Extract target (source object) features from measured response (polarizabilities)

Target Classification

 Classify source objects based on extracted features

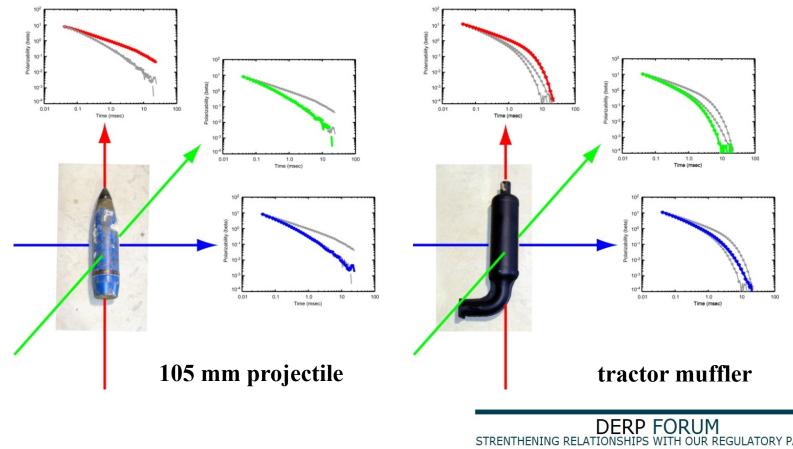
Dig List Decision


Select TOI for digging and validate decisions


Detection Technologies Parameter Extraction

Geophysical Inversion

• Calculate magnetic polarizability (β) using EMI response model

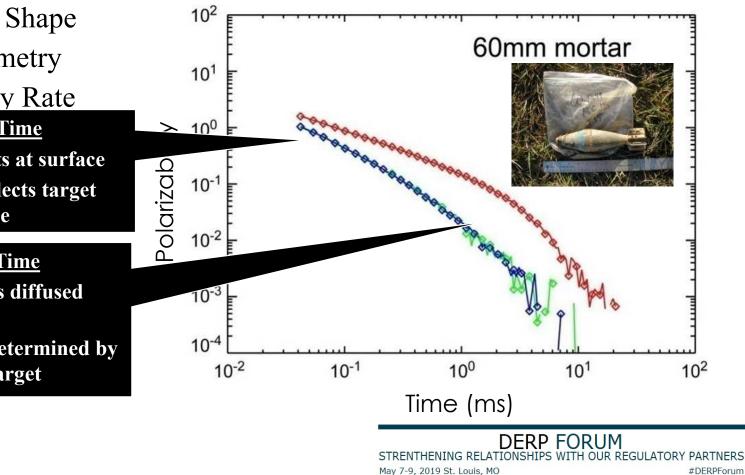


Detection Technologies Geophysical Inversion Outputs

Detection Technologies **Polarizabilities - EM Signature**

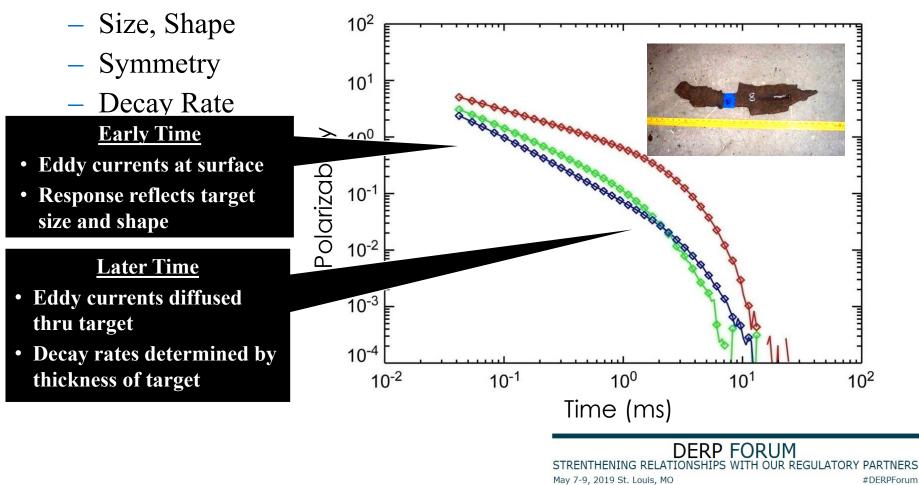
• Polarizabilities constitute the basic EM signature of a source object (three primary axis responses).

May 7-9, 2019 St. Louis, MO


#DERPForum

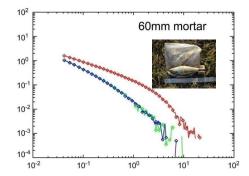
Detection Technologies How do we classify?

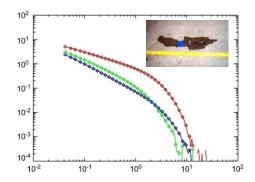
- We utilize a source objects Polarizabilities
- Attributes derived from Polarizabilities
 - Size, Shape
 - Symmetry
 - Decay Rate
 Early Time
- Eddy currents at surface
- Response reflects target size and shape


<u>Later Time</u>

- Eddy currents diffused thru target
- Decay rates determined by thickness of target

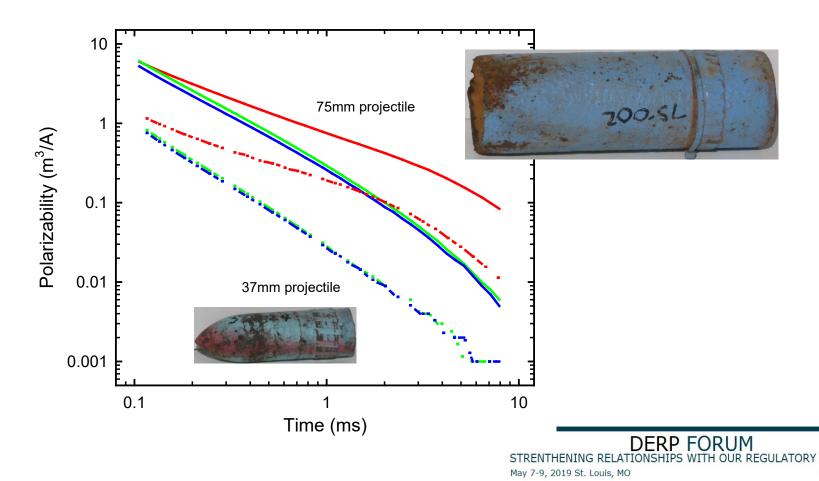
Detection Technologies How do we classify?

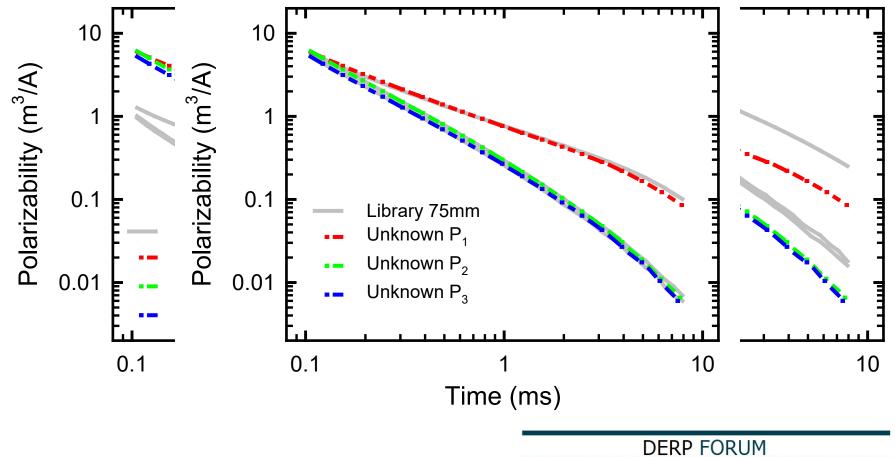

- We utilize a source objects Polarizabilities
- Attributes derived from Polarizabilities



Detection Technologies Polarizability Relationships

• Basic relationship between properties of the polarizabilities and the source object

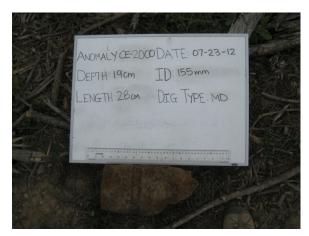

Polarizability Property	Target Property
Decay rate	Wall thickness
Relative magnitude	Shape
Total magnitude	Size (volume)


Detection Technologies Example: Size Comparison

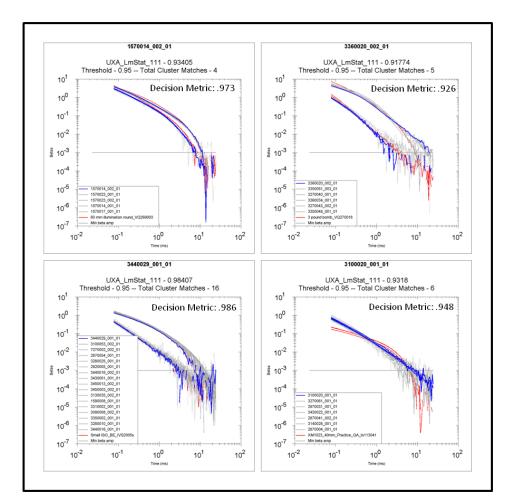
• Amplitude scales with the source objects volume

Detection Technologies How Do You Get Classified as a TOI?

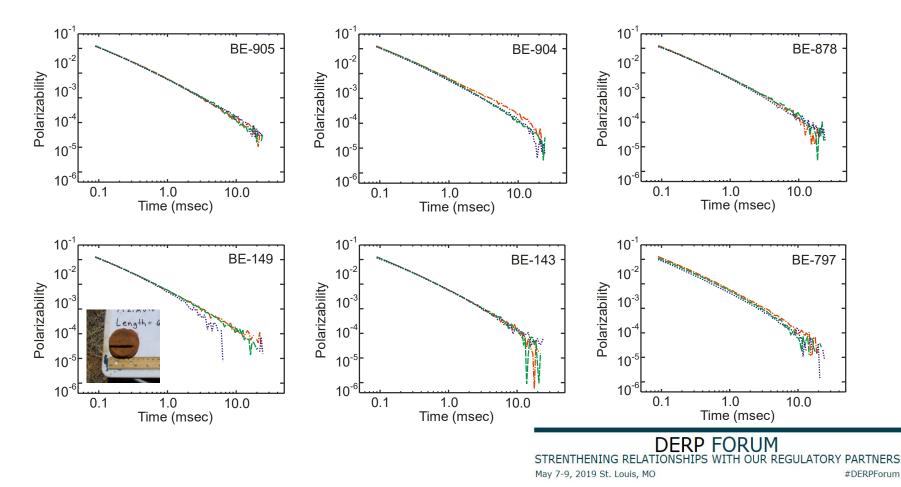
Match a Munition in the Library



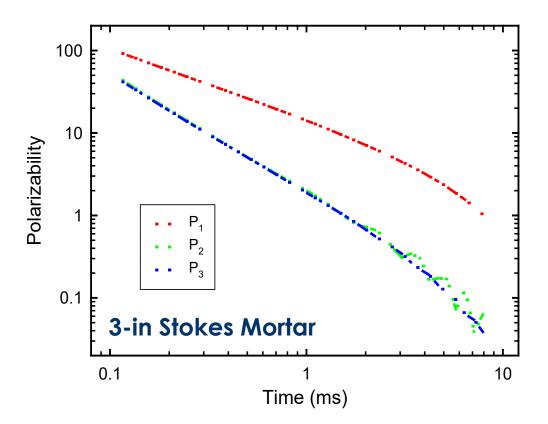
Detection Technologies Don't Have To Be Whole to Match Library


Classified as TOI, Type = 155

Classified as TOI, Type = 105

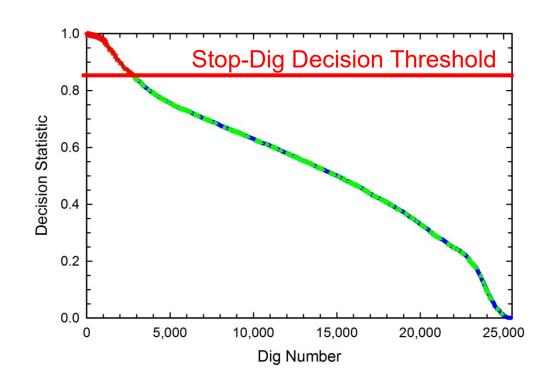

Detection Technologies Library Validation – "Cluster" Analysis

- Multiple items with similar signatures identified at site?
- Representative samples are identified for intrusive investigation
- Signatures of recovered TOI <u>not</u> already represented in the library are added to the library


Detection Technologies Example "Cluster" Analysis

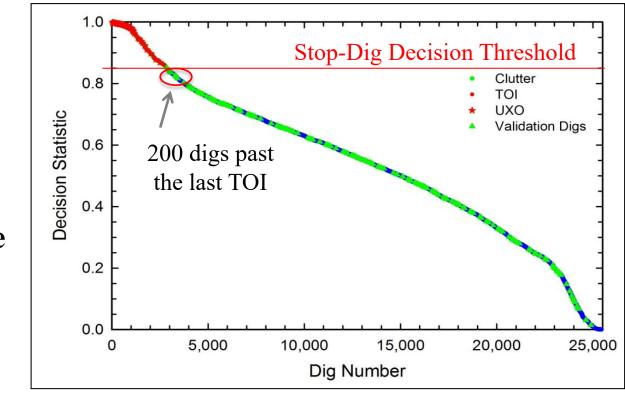
• 25 items with similar polarizability identified at the site but they did not match project library

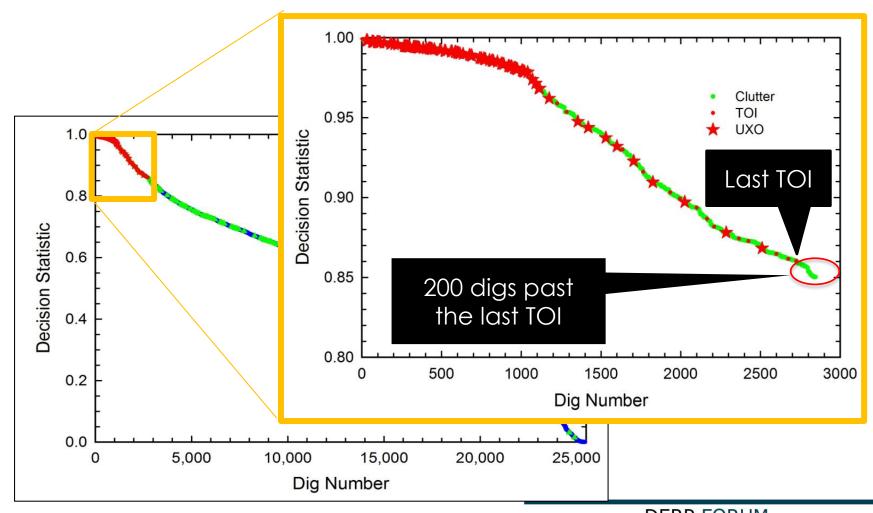
Detection Technologies Library Validation – Outliers


- Polarizability shows very large, heavy-walled and symmetrical item, that doesn't match project library
- Signatures of recovered TOI added to the library
- CSM for site reviewed

Detection Technologies ACG Prioritized Dig List

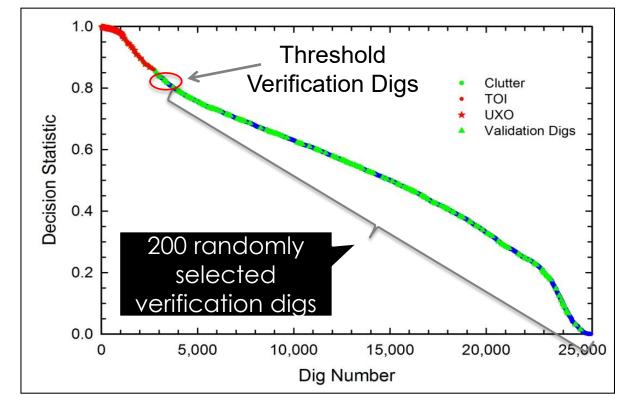
- Derived sources are ranked according to the 'decision metric' usually a measure of goodness of fit to the munitions library
- Stop-dig Threshold'


 point at which all remaining dig list entries are considered non-TOI (no dig required)
- Decision Threshold Verification
- Classifier Validation


Detection Technologies Stop-Dig Threshold Validation

- Dig an additional 200 items beyond the last TOI
 - If necessary, reset threshold and start intrusive investigation again

The number 200 is a consensus number reached by the members of the IQDTF Advanced Classification Subgroup.



Detection Technologies Example: Threshold Validation

Detection Technologies Classification Process Validation

- Validation digs are randomly selected additional 200 non-TOI for qualitative decision confirmation
- Confirm reasons for nodig decisions
- Validation of the entire process!

"Make the right decisions, for the right reasons." Aristotle

Detection Technologies AGC Quality Program

• Quality System is key to success

- Accreditation and QAPP provide the framework
- Sustain with policy, training and implementation

• **QAPP** template provides necessary framework

- QAPP template is <u>not</u> a tutorial, doesn't teach quality
- Focus on transparent design, clear DQOs and SOPs

• Accreditation is a game changer

- Requires company wide commitment to quality
- Independent accreditation body
- Opportunity for continual quality improvement

Detection Technologies AGC Quality Program

- IDQTF and EDQW Efforts
- Developed and implemented a quality system based on national and international standards for the performance of Advanced Classification at DoD Munitions Response Sites
 - Developed a Quality Assurance Project Plan template using the Uniform Federal Policy for Quality Assurance Project Plans (UFP-QAPP)
 - Implements ANSI/ASQ E4 (IDQTF)
 - Developed quality systems documentation for the 3rdparty accreditation of organizations performing advanced classification
 - Implements ISO/IEC 17025 (EDQW)

AGC Quality Program - Accreditation

DoD Advanced Geophysical Classification Accreditation **Program (DAGCAP)**

- Modeled after DoD Environmental Laboratory Accreditation Program (ELAP)
- Third-party Accreditation Bodies (ABs) conduct assessments
- Applies to all testing organizations regardless of size or volume of business
- Applies to use of advanced geophysical classification at all MRSs

AGC Quality Program - Accreditation

DoD Advanced Geophysical Classification Accreditation **Program (DAGCAP)**

- Ensures organizations will have quality systems in place
- Requires demonstration of capability
- Standard Operating Procedures
- Corrective actions and continual improvement is a condition of accreditation

Detection Technologies AGC Quality Program Update

DoD Advanced Geophysical Classification Accreditation **Program (DAGCAP)**

- 12 companies currently accredited (7 large, 5 small)
- DoD Quality Systems Requirements (QSR) 2.0 published
- Software validation SOP currently in place (3 software suites currently validated)
- Hardware validation on its way

Detection Technologies Keys to Regulatory Acceptance

May 7-9, 2019 St. Louis, MO

#DERDEorum

- Classifier Decision Points
 - No "Black Box" analysis or decisions
- Transparent decisions Detection & Classification
 - Understand all decision points
 - Establish decision thresholds, criteria and standards
 - Well documented decision trees
- Verification and Validation Strategy
 - Specifications for data quality and monitoring
 - Classifier models and decision thresholds
 - Final project results

"Make the right decisions, for the right reasons." Aristotle

Detection Technologies Concluding Thoughts

- Fully-integrated Project Delivery Team (PDT), including regulators and stakeholders, is important for success
- Preference given to technologies for which performance can be modeled/predicted and validated
- Success dependent on detailed plans and adherence to those plans

For more detailed information regarding Advanced Geophysical Classification, please attend the Munitions Response session of the DERP Forum

QUESTIONS

Military Munitions Response Program Overview Data Quality

Dr. Jordan Adelson Chair, Environmental Data Quality Workgroup jordan.adelson@navy.mil

IDQTF and EDQW Efforts for Advanced Classification

Developed and implemented a quality system based on national and international standards for the performance of Advanced Classification at DoD Munitions Response Sites

- Developed a Quality Assurance Project Plan template using the Uniform Federal Policy for Quality Assurance Project Plans (UFP-QAPP)
 - Implements ANSI/ASQ E4 (IDQTF)
- Developed quality systems documentation for the 3rdparty accreditation of organizations performing advanced classification
 - Implements ISO/IEC 17025 (EDQW)

DAGCAP Overview

- Modeled after DoD Environmental Laboratory Accreditation Program (ELAP)
- Third-party Accreditation Bodies (ABs) conduct assessments
- Applies to all testing organizations regardless of size or volume of business
- Applies to use of advanced geophysical classification at all MRSs

DAGCAP Overview

• DAGCAP

- Ensures organizations will have quality systems in place
- Requires demonstration of capability
- Standard Operating Procedures
- Corrective actions and continual improvement is a condition of accreditation

AGCMR QAPP Template Highlights

- Based on the Optimized Uniform Federal Policy for Quality Assurance Project Plan (UFP-QAPP) (IDQTF 2012)
- All decision-makers (DoD, contractors, regulators and stakeholders) participate in planning
- Facilitates and documents the *systematic planning process* leading to detection and classification of buried MEC
- Provides structured, transparent, reproducible process for decision-making in the field

Ensures a scientific basis for decision-making

AGCMR-QAPP Template Features

- Includes "crosswalk table" identifying where required quality system elements are addressed
- Green text provides instructions and guidance for completing each worksheet
- Blue text provides examples of the type of information needed
- Black text identifies minimum recommended requirements (where applicable)

Template is based on the RA phase of investigation Project teams should modify as needed for other phases

MR-QAPP Toolkit?

- MR-QAPP Toolkit will contain multiple modules and fact sheets that will help project teams plan data collection efforts and generate QAPPs for all phases of MRS investigations
- Module 1 Remedial Investigation (RI)/Feasibility Study (FS)
- Module 2 Remedial Action (RA)
 - Updating the AGCMR-QAPP as MR-QAPP Module 2
 - Will expand AGCMR-QAPP beyond just the use of AGC

MR-QAPP Toolkit Module 1

Example

- **Blue** text in Module 1 is based on a fictional site, "Camp Example"
- Example designed to illustrate an RI/FS at a complex munitions response site
 - Several different types of target areas, maneuver areas, and other areas of concern.
- SPP and data collection activities are conducted in phases, requiring planning steps and QAPP revisions between phases.
- While a phased investigation is well-suited to a complex MRS, the process of QAPP development is scalable, however, and may be simplified for smaller, less complex projects.

MR-QAPP Toolkit Module 1 Weight of Evidence Decision Making

- Unlike traditional chemical cleanups, MRS do not have a clearly defined endpoint based on acceptable risk
- A weight of evidence approach is a familiar concept found in scientific and regulatory literature.
- It is a method for decision-making that involves consideration of multiple sources of information and lines of evidence.
 - CSM
- Avoids relying solely on any one piece of information.
- Will allow us to make informed defensible decisions on MRS

QUESTIONS

Military Munitions Response Program Overview MMRP RMM

Kari L. Meier, Ph.D. Project Manager and MMRP Response Process Trainer U.S. Army Corps of Engineers Environmental and Munitions Center of Expertise kari.l.meier@usace.army.mil

Munitions Response Risk Management Method (RMM)

• Tool to Assess Risks presented by

- Presence of explosive hazards
- In presence of receptors and pathway

• Currently in trial/pilot phase: initial results

- Supports various conditions
- Promotes communication
- Promotes data quality objective (DQO) development
- Supports definition of remedial action objectives (RAOs)
- Uses real data
- Keeps "no further action" (NFA) as a possible outcome
- Differentiates and justifies Acceptable Vs. Unacceptable

Likelihood to Encounter

		elihood of Encounter	Access Conditions (frequency of use)				
	(Amount of MEC versus Access Conditions)		Regular	Often	Intermittent	Rare	
	Amount of MEC	Category I (Most)	Frequent	Frequent	Likely	Occasional	
Matrix 1		Category II	Frequent	Likely	Occasional	Seldom	
		Category III	Likely	Occasional	Seldom	Unlikely	
		Category IV	Occasional	Seldom	Unlikely	Unlikely	
		Category V	Seldom	Seldom	Unlikely	Unlikely	
		Category VI (Least)	Unlikely	Unlikely	Unlikely	Unlikely	

Severity of Incident

Severity of Explosive Incident (Severity vs. Likelihood of Encounter)		Likelihood of Encounter (from Matrix 1)					
		Frequent	quent Likely Occasional		Seldom	Unlikely	
Severity	Catastrophic/Critical	А	А	В	В	D	
	Modest	В	В	В	С	D	
	Minor	В	С	С	С	D	
	Improbable	D	D	D	D	D	

DERP FORUM STRENTHENING RELATIONSHIPS WITH OUR REGULATORY PARTNERS May 7-9, 2019 St. Louis, MO #DERPForum

Matrix 2

Likelihood for Incident

	Likelihood of Detonation (Sensitivity vs. Likelihood to Impart Energy)		Likelihood to Impart Energy on an Item			
(Sensitivity			Modest	Inconsequential		
	High	1	1	3		
sitivity	Moderate	1	2	3		
Sens	Low	1	3	3		
0)	Not Sensitive	2	3	3		

Resulting Site Conditions

Acceptable and Unacceptable Site Conditions		Result from Matrix 2				
		А	В	С	D	
ш Э	1	Unacceptable	Unacceptable	Unacceptable	Acceptable	
Result from Matrix 3	2	Unacceptable	Unacceptable	Acceptable	Acceptable	
¥ ₽	3	Unacceptable	Acceptable	Acceptable	Acceptable	

Matrix 4

Matrix 3

DERP FORUM STRENTHENING RELATIONSHIPS WITH OUR REGULATORY PARTNERS May 7-9, 2019 St. Louis, MO #DERPForum

Supports Remedial Action Objectives

- RAOs established for each exposure scenario
- Identify acceptable conditions for each scenario

MRS	Receptors	Location	Pathways	MEC Hazard	Vertical (ft bgs)	Baseline Risk	Acceptable Remediation Goals
Impact Areas (HUA)	Recreationa I users	All portions of impact area	Interaction during hiking, camping, hunting (Non- intrusive)	60mm HE mortar	1.5	Unacceptable (A- 2)	B-3 or D-2
				75mm HE projectile	3.0	Unacceptable (A- 2)	B-3 or D-2
	Maintenanc e Crews	Roads and trails plus 15 m buffer	Interaction during trail maintenance (Intrusive)	60mm HE mortar	1.5	Unacceptable (A- 1)	B-3 or D-1
				75mm HE projectile	3.0	Unacceptable (A- 1)	B-3 or D-1

- Looking for additional sites (preferably FUDS) to use the RMM during the trial/pilot phase
- For more detailed information regarding the Risk Management Model (RMM), please attend the "Risk Management Method (RMM)" session of the DERP Forum

Summary

Key Messages & Oversight Considerations

- Detection capabilities have dramatically increased
- Quality assurance and risk management tools evolving
- Oversight considerations:
 - Confirm munitions-of-interest and depths-of-interest
 - Verify approach for <u>detection</u> and <u>classification</u>
 - Ensure QAPP fully documents project upfront
 - Verify full implementation of QAPP
 - Rigorous root-cause analysis and corrective actions
 - Verify data quality objectives are met
 - Validate detection & classification decisions

References

- Memorandum dated 3 January 2018, signed by Karen Baker, Subject: Trial Period for Risk Management Methodology at Formerly Used Defense Sites (FUDS) Military Munitions Response Program (MMRP) Projects
- Memorandum dated 7 February 2019, signed by Karen Baker, Subject: Trial Period Extension for Risk Management Methodology (RMM) at Formerly Used Defense Sites (FUDS) Military Munitions Response Program (MMRP) Projects

DEPARTMENT OF THE ARMY U.S. ARMY CORPS OF ENGINEERS 441 G STREET NW WASHINGTON, D.C. 20314-1000

FEB 0 7 2019

" " to cate backer and have - -

CEMP-CED

MEMORANDUM FOR SEEDISTRIBUTION

SUBJECT: Trial Period Extension for Risk Management Methodology (RMM) at Formerly Used Defense Sites (FUDS) Military Munitions Response Program (MMRP) Projects

REFERENCES:

 a. Memorandum dated 3 January 2017, signed by Karen Baker, Subject: Trial Period for Risk Management Methodology at Formerly Used Defense Sites (FUDS) Military Munitions Response Program (MMRP) Projects

QUESTIONS