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Project No: 17-834 

Title: An early-warning mapping tool for forecasting fire risk on DoD lands in the 

arid West 

Deliverable: Metadata and summary of methods used to develop web application 

features 

Study	Area 

Environmental Protection Agency (EPA) level III	desert	ecoregions were used to 

delineate the bounds of statistical models and maps of large fire probability. The 

different	climates, topography, dominant	vegetation, and vegetation productivity across 

these deserts influence fuels and fire behavior, and contribute to different	drivers of fire 

risk	(Abatzoglou and Kolden 2011, Brooks and Chambers 2011). The Snake River Plain is 

considerably lower, more gently sloping, and contains more grassland vegetation types 

than the Basin and Range to the south. The Northern and Central Basin and Range are 

cold desert	shrublands and, relative to the warm desert	shrublands, are characterized 

by higher precipitation and vegetation productivity. In contrast, warm desert	shrublands 

characterize most	of the Mojave and Sonoran Deserts in the southern most	extent	of 

the study area, where precipitation is relatively low and native vegetation types exhibit	

generally low productivity (see https://www.epa.gov/eco-research/level-iii-and-iv-

ecoregions-continental-united-states). 

Model Design 

Using historical fire observations across the desert	ecoregions, we modeled the 

conditional probability of large fire (i.e., >	300 acres), which we define as the probability 

that	an area	on the landscape will burn in a	large fire following either an ignition event	

or fire spread to that	area	(e.g., see Gray et	al., 2018). We chose to use 300 acres 

because this threshold accounted for at	least	97 percent	of the total area	burned from 
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1992-2016, 	in	all	ecoregions	except	for	the	Sonoran	Desert, 	where	this	threshold	was	

only	50	acres (Short	2017).	Because	the	minimum	detectable	fire	size	of	our	large	fire	

dataset	was	300	acres	(see	below), 	we	also	used	a	300-acre	threshold	for	the	Sonoran.	

We	used	the	random	forest	(RF)	classification	algorithm to	train	predictive	models	of	

large	fire	probability.	Random	forest	is	a	machine	learning	technique	that	recursively	

partitions	variables	to	classify	an	outcome	of	interest, 	in	this	case	small	or	large	fire	

events	(Prasad	et	al.	2006).	Given	the	broad-scale	differences	described	above	in	the	

drivers	of	fire	risk	across	desert	ecoregions, 	we	trained	RF	models	separately	for	each	of	

three	desert	sub regions, 	namely, 	the	Snake	River	Plain	(Model	1), 	the	Northern	and	

Central	Basin	and	Range	(Model	2), 	and	the	Mojave	and	Sonoran	Deserts	(Model	3;	Fig. 

1). 

Figure 1. The Random Forest (RF) classification algorithm, which is a	machine learning technique, was 
used	to	train	models of large fire probability separately for three desert sub	regions. 
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Response	Variables 

The binary response variable in our RF models was a	point	on the landscape 

where there was an ignition event	that	resulted in a	small fire (i.e., <	300 ac; “0” 

response) or that	historically burned in a	large fire (i.e., >	300 ac; “1” response). 

Following methods of Gray et	al. (Gray et	al. 2018) samples of large fires that	occurred 

from	2005-2018 were drawn from the MODerate-resolution Imaging Spectroradiometer 

(MODIS) Burned Area	(BA) dataset	(Roy et	al. 2008), which is a	global, monthly 500-m	

gridded product	that	contains calendar day-of-burn and quality information. Large	fire	

samples were taken as the centroid of 500-m	pixels. To avoid spatial autocorrelation of 

predictor variables (see below) within large fires, we drew at	most	one sample (a	point	

location) from within each large fire. As mentioned above, the minimum detectable 

burn size of the BA dataset	is 300 acres (Giglio et	al. 2009, Roy and Boschetti 2009), and 

thus samples of small fires were drawn from a	well-vetted, point-of-occurrence 

database of reported fires in the United States from 2005-2016 that	contains day-of-

discovery (Short	2017). We matched these small fire samples with an equal sized 

random sample of small fires, within each desert	sub region. This ensured a	balanced, 

1:1 ratio of large to small fires with which to train RF models. 

While spatial autocorrelation of predictor variables is invariably present	within 

individual fires, burning conditions can also be quite heterogeneous over the course of a	

single large fire (Turner 	2010). Therefore, we took a	further step to capture this 

heterogeneity. We repeated the above sampling and model building protocol using 10 

different	random samples of large and small fires, such that	each of 10 RF models were 

not	entirely independent	but	contributed slightly novel information to a	mean 

prediction across those 10 models. This type of ensemble modeling provides a	means of 

producing models that	are more accurate than the individual models that	make them 

up, while depicting the variance across predictions, which helps users better assess risk 

(Dietterich 2000, Palmer et	al. 2005).	
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Predictor Variables 

Predictor variables were derived to describe the fuels, topography, climate, and 

fire weather preceding fire (Table 1). Specifically, an individual large or small fire sample 

was spatially related to long-term predictors derived over a	multi-year period and near-

term predictors derived over the weeks and months preceding fire occurrence. The 

integration of predictors in this way resolves the dynamic probability of large fire into 

long-term drivers of fire, and near-term land surface and ambient	conditions directly 

leading up to a	fire event. To account	for the difference in spatial scales between a	large 

fire and the native resolution of spatial predictors (i.e., ranging from 30 m to 4 km), we 

used a	moving window to summarize predictors within a	circular kernel with radius 630 

m. Predictor variables that	were not	in a	native 250-m resolution were resampled using 

bilinear interpolation. 

1. Fuel and	Topography	Variables	

To characterize long-term live fuel availability, we used the Enhanced Vegetation 

Index (EVI, 250-m resolution) from the MODIS MOD13Q1 v006 product	(Didan 2015),	

which provides a	proxy for total vegetation. We used a	multi-year time-series of EVI	to 

capture the variability in overall biomass production, but	also as a	basis to capture 

variability in sub-pixel vegetation dynamics	(e.g., Helman et	al., 2015). MOD13Q1 are 

16-day composites computed from atmospherically corrected, bi-directional daily 

surface reflectance. We only retained observations that	were free of ice and snow. We 

extracted the following EVI	metrics from 2000 (the year MODIS was deployed) to the 

approximate date of fire occurrence: (i) reflectance values representing maximum, 

minimum and selected percentile values (10, 25, 50, 75 and 90% percentiles); (ii) mean 

reflectance values for observations between selected percentiles (for the max-10%,	10-

25%,	25-50%,	50-75%,	75-90%, and 90%-max); and (iii) slope of linear regression of EVI	

versus image date. We included these metrics to build a	generic feature space to 

characterize vegetation over at	least	five complete years, as they have been used in	

5 



	 	

	 	 	 	 	 	 	 	

	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		

	

 	

 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	

previous machine-learning applications to characterize regional-scale vegetation cover 

(Hansen et	al. 2013).	

We characterized the near-term live vegetation abundance and condition with 

EVI	observations in the five months prior to fire occurrence. Preliminary analyses of pre-

fire EVI	in burned areas indicated that, on average, the five months leading up to fire 

captured the seasonal growth cycle of fuels available to burn. Therefore, we included 

the maximum and minimum of EVI	in these five months. To account	for senesced 

biomass from the year prior to fire occurrence (i.e., lag year) that	can remain standing as 

fuel for a	subsequent	fire season (Gray et	al. 2014),	we included these same EVI	metrics 

for the lag year. Lastly, to capture the seasonal fuel growth above or below the long-

term background EVI, we subtracted the long-term 10th percentile of EVI	from the 

current	5-month maximum EVI, for both the current	and lag year (e.g.,	Casady et	al., 

2013).	

To characterize topographic variables, namely, elevation, slope, aspect, and 

terrain roughness (standard deviation of elevation), we used the Shuttle Radar 

Topography Mission digital elevation data	(Farr et	al., 2007;	30-m resolution). 

2. Climate	and 	Weather	Variables 

We incorporated climate predictors computed from monthly normals of 

temperature and precipitation for the period 1981-2010, as derived from the 

Parameter-elevation Regressions on Independent	Slopes Model (PRISM	Norm81m vM2; 

800-m resolution; Daly et	al., 1994). We selected five metrics that	summarized long-

term annual means, extremes, and seasonality of temperature and precipitation, and 

which have been used previously to capture the amount	and dryness of biomass to 

predict	fire occurrence	(Krawchuk et	al. 2009, Moritz	et	al. 2012). These metrics 

included annual precipitation, precipitation of the warmest	month, mean temperature 

of the wettest	month, mean temperature of the warmest	month, and temperature 

seasonality (i.e., the standard deviation of mean monthly temperatures; O’Donnell and 

Ignizio, 2012). 
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Standard meteorological variables known to influence the daily fire and fuel 

environment	were taken from the GRIDMET gridded daily surface meteorological 

dataset	(4-km resolution; Abatzoglou, 2013). We incorporated the total precipitation, 

mean minimum and maximum temperature, mean minimum and maximum relative 

humidity, and mean wind speed and direction, for the week preceding fire occurrence. 

Standard weather variables have also been compiled into indices that	more directly 

address the processes by which they influence fire behavior and fuels, including the 

Energy Release Component	(ERC), the Burning Index (BI), and 100- and 1000-hr dead 

fuel moistures (fm100 and fm1000). These indices are components of the US National 

Fire Danger Rating System (NFDRS) and are derived from models built	on the 

combustion physics and moisture dynamics of the fuel environment, here assuming a	

consistent	fuel model ‘G’ typified by short	needle pine and heavy dead loads 

(Schlobohm and Brain 2002, Abatzoglou 2013). The fm100 and fm1000 indices 

represent	the modeled moisture content	of large dead fuels in the 1 to 3 inch diameter 

class and the 3 to 8 inch diameter class, respectively. ERC is a	cumulative fuel moisture 

index reflecting the contribution of all live and dead fuel moistures on the potential heat	

release, and is also an input	into the BI, which additionally incorporates the potential 

rate of fire spread. GRIDMET assumes that	the persistent	fuel environment	includes all 

size classes of dead fuels, as well as herbaceous and woody live fuels, and all contribute 

to the derived values of these indices. We incorporated the mean values of ERC, BI, 

fm100, and fm1000 in the 	week 	preceding 	fire 	occurrence. 

Table	1. Spatially Explicit climate, weather, fuel, and topography predictors of large	fire	probability, 
including 	the 	data 	source 	and 	spatial	resolution. 

Predictor Set Source Resolution 
Long-term climate variables PRISM1 800	m 

Annual precipitation, temperature seasonality (CV), 

precipitation of the warmest month, mean temperature of 

the wettest month, mean temperature of the warmest 

month 

Long-term land surface variables 

EVi percentiles and interval means preceding fire year 

7 



	 	

	 	 	 	 	 	

	

	

	

    
      

       

	

	

	

	

	

	

   

     

    

     

       

 

	 	

	
	 	 	 	 	 	 	 		

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 		

	 	 	 	 	 	 	 	 	 	 	 	

	

	
	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	

	 	 	 	 	 	

	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

Elevation, slope, aspect, topographic roughness MODIS 250	m 

USGS 30	m 

Near-term land surface variables 
EVI2 minimum, maximum, and change from background MODIS 250	m 

EVI in the five months preceding fire USGS 30	m 

Near-term weather variables GridMet3 4	km 

100- and 1000-hr fuel moisture, burning Index, 

precipitation, temperature, relative humidity, specific 

humidity, potential evapotranspiration, solar radiation, 

wind speed, wind direction, Palmer Drought Severity 

Index 

1 PRISM =	Precipitation-elevation Regressions on Independent Slopes Model 
2 EVI =	Enhanced Vegetation Index, an index of fuel availability that is derived from 16-day composites of 

MODIS imagery. 
3GridMet = Gridded Surface Meteorological Data.	Values were taken for	the week preceding fire 

occurrence. 

Mapped Products 

Using 10 trained RF models, we derived spatially explicit	predictions of the mean 

and standard deviation of large fire probability at	a	250-m resolution. The extent	of 

mapped predictions was limited to all USGS HUC8 watersheds that	intersected DoD 

installations within the desert	ecoregions (U.S. Geological Survey and U.S. Department	

of Agriculture Natural Resources Conservation Service 2013). Agricultural land cover 

(i.e., cultivated crops) from the National Land Cover Dataset	(Homer et	al., 2015), urban 

areas from the US Census Bureau (available at	https://www.census.gov/geo/maps-

data/data/cbf/cbf_ua.html), and waterbodies from the USGS National Hydrography 

Dataset	(available at	https://www.usgs.gov/core-science-systems/ngp/national-

hydrography/access-national-hydrography-products) were masked from the final 

extent.	

Models were trained and predictions implemented within Google Earth Engine 

(GEE; Gorelick et	al., 2016), which is a	cloud-based platform that	makes terabyte-scale 

analysis available on an extensive catalog of satellite imagery and geospatial datasets. 
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Daily spatial predictions were created at	one-week intervals from 2005 through the 

present. To create predictions for the present	week, we developed a	continuous 

integration (CI) ‘pipeline’ to generate new predictions as soon as the dynamic predictors 

upon which the model is conditioned become available in GEE. The refresh rate of each 

predictor can vary, according to the data	sources. For example, GRIDMET assets are 

updated approximately every two days, whereas the MODIS EVI	products are updated 

approximately every eight	days. The pipeline, which tests for the availability of 

predictors against	the requirements of the model, runs on a	schedule — compiling each 

Monday morning at	04:00 Pacific Standard Time. If all of the criteria	are met, a new 

prediction is generated, appended to the existing collection, and pushed up to the 

interactive mapping tool. 

Dataset Evaluation 

We used the MODIS BA and FOD datasets to generate a	sample from within all large 

fires	from	2005-2018, and an equal-sized random sample of small fires from 2005-2016,	

to evaluate the model on a	testing dataset	(n =	61, 328, and 136 for Models 1, 2, and 3, 

respectively). These samples were ‘seeded’ with a	random number generator different	

from any of the training samples, and so this testing dataset	can be considered partially 

independent	from the training datasets. Again, large fire samples were taken as the 

centroid of 500-m	pixels. Using predictions (i.e., raster maps) of large fire probability 

from 2005 through 2018, we extracted predicted values at	the time (i.e., the closest	

prediction in time prior to fire occurrence) and location of individual testing points. 

Based on this training data, overall accuracy of the models ranged from 77% to 90% 

(Table 2). 

We extracted variable importance values using the ‘rfpimp’ package in Python 

(available at	https://github.com/parrt/random-forest-importances). We ranked 

predictor variable importance based on the permutation importance, which directly 

measures importance by observing the effect	on model accuracy by randomly 

permuting the values of each predictor variable (Cutler et	al. 2007). Since RF ‘spreads’ 

9 
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variable importance across collinear variables, we used a	built-in function in the ‘rfpimp’ 

package to permute collinear variables together and determine their relative, collective 

importance (Fig. 2).	

Table	2. Confusion	matrix based	on	a partially independent testing dataset of large and	small fires 

samples	from 2005-2018. Model predictions are the mean values across	10 Random Forest models	in 

each of three	desert subregions. False	Negatives (FN) and False	Positives (FP) were	those	testing	samples 

incorrectly 	predicted 	as 	either a 	Large 	(FP) 	or 	Small	(FN) 	fire.	

Reference 
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Model 1 Prediction Small Large Accuracy 

Small 

Large 

Model 2 Prediction 

26 

3	(FP) 

11	(FN) 

21 77% 

Small 

Large 

Model 3 Prediction 

134 

41	(FP) 

34	(FN) 

119 77% 

Small 

Large 

59 

7	(FP) 

6	(FN) 

64 90% 
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Figure 2. Relative variable importance for groups of predictors used	to	model large fire probability 

across three	desert sub regions. Variable	importance	was determined by observing	the	effect on 

model accuracy by randomly permuting the values of each predictor variable. 
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