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PREFACE 
 

 
This report represents the final product in partial fulfillment of Department of Defense 

Legacy Resources Management Fund Projects Nos. 02-170, 03-170, 04-170, and 05-170, which 

were funded in Fiscal Years 2002–2005.  Requested funding was provided in 2002, while only 

part of requested funding was provided in the other years.  Because of incomplete funding, some 

tasks were reduced or eliminated.  This report fulfills the Legacy Project report requirements.  

Legacy funding was augmented with funding from other sources, principal among these are the 

National Park Service (NPS) Systemwide Archeological Inventory Program, USS Arizona 

Memorial, Arizona Memorial Museum Association, the NPS Submerged Resources Center, and 

significant in-kind support from the federal agencies and academic institutions that have 

contributed to this report.  Although this is the final report for the Legacy Project, it constitutes 

an interim synthesis report for the USS Arizona Preservation Project, which remains ongoing.   

The project’s primary focus was to acquire requisite data for understanding and 

characterizing the complex corrosion and deterioration processes affecting Arizona’s hull, both 

internally and externally, and to model and predict the nature and rate of structural changes 

resulting from corrosion.  The interdisciplinary research approach to characterizing and 

understanding USS Arizona deterioration and integration into a predictive model reported here 

was designed to produce cumulative data whose synthesis will inform management actions 

regarding long-term stewardship of this National Historic Landmark site.  Beyond informing 

management decisions about Arizona, we believe this research approach has produced results 

that contribute to each of the disciplines involved, and which are directly applicable to the 

thousands of steel legacy vessels submerged worldwide.  This report represents what we have 

learned so far about USS Arizona and other submerged steel hull’s deterioration.  Because 

Arizona research is not complete, and data derived from the monitoring program have not been 

generated and incorporated, report conclusions will be refined and may change as data-gaps are 

filled and new information is added.  Data presented here represents the most informed view of 

the ship based on scientific observations, investigations and experimentation by outstanding 

experts in numerous fields, but it is necessarily incomplete because not all research domains 

have been completed.  We have learned a great deal that will allow NPS and U.S. Navy 

 xxi



managers to make correct decisions about immediate needs within a stewardship framework, 

although lack of complete funding has resulted in gaps in our knowledge about critical aspects of 

Arizona’s deterioration.  In that regard, the work reported here is an important step toward 

refining questions that guide future research directed toward a full understanding of Arizona’s 

deterioration.  

 

 xxii
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CHAPTER 1 
 
 
 
 
 
 
 
 
 
Introduction 
 
Larry E. Murphy and Matthew A. Russell  
 
 
 
 

SIGNIFICANCE 
 

USS Arizona, a National Historic Landmark—the highest level of national historic 

significance in the United States—is a U.S. Navy object administered cooperatively by the 

National Park Service (NPS) and U.S. Navy, and among the most recognized and visited war 

memorials in the United States (Figure 1.1).  A million and a half visitors annually make the 

short trip across Pearl Harbor to the USS Arizona Memorial, which spans the sunken hull.  The 

Memorial is located off the northwest corner of Ford Island in the East Loch of Pearl Harbor, 

South-central Oahu, Hawaii (Figure 1.2).   

The Pennsylvania-class battleship USS Arizona was completed in 1916 (Figure 1.3) and 

was sunk in Pearl Harbor, Hawaii on December 7, 1941 during the Japanese attack on the U.S. 

Navy’s Pacific Fleet.  In the first 15 minutes of the attack, Japanese aircraft struck Arizona with 

several bombs, strafed the ship, and then at about 0810 delivered the battleship a mortal blow.  A 

Japanese Nakajima B5N2 “Kate” horizontal bomber dropped a single 1,760-pound projectile 

constructed from a 16-inch armor piercing shell that struck near Turret No. 2 and penetrated deep 

into the battleship’s interior before exploding and sympathetically detonating the black powder 

magazine, which ignited the forward magazines containing smokeless powder for the forward  
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turrets (Figure 1.4).  When the forward magazine exploded, it destroyed most of the battleship’s 

forward half below the upper deck, presumably including the forward oil bunkers aft to 

approximately frame 78.  The two forward turrets and the conning tower dropped about 20 feet, 

their foundations destroyed by the blast.  The ship sank in minutes, and the explosion ignited 

fires that raged for two-and-a-half days (Figure 1.5).  The explosion and subsequent 

conflagration killed 1,177 sailors and marines aboard USS Arizona—the event remains the 

largest single-ship loss of life in U.S. naval history.  More than 900 men remain entombed within 

the ship and are considered buried at sea with the battleship as their final resting place.  Millions 

of visitors, many international, consider the vessel a national icon.  This naval memorial remains 

deeply ingrained in American consciousness, and still commands an honor guard from the many 

capital ships that ply Pearl Harbor today (Figure 1.6). 

 

USS ARIZONA PRESERVATION PROJECT  

 

Beginning in 1998, the NPS Submerged Resources Center (SRC) and USS Arizona 

Memorial (USAR), along with many partners, conducted a comprehensive research program 

 

 
Figure 1.1.  The USS Arizona Memorial (NPS Photo by Brett Seymour). 
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 directed at understanding the nature and rate of a range of natural processes affecting USS 

Arizona’s deterioration.  The USS Arizona Preservation Project is a multi-year, interdisciplinary 

and cumulative effort, with each element  of the project contributing to basic research required to 

make informed management decisions for Arizona’s long-term preservation and to minimize 

environmental hazard from a potential fuel oil release of the estimated 500,000 gallons still 

onboard the battleship (Russell, et al. 2004).  Developing reasonable and effective management 

alternatives and determining the most desirable actions, particularly those regarding intervention 

or rehabilitation, cannot be done without a sound, scientifically-based research program 

conducted within a management framework aimed at collecting data necessary to make informed 

management decisions.  Because of the particular national importance of Arizona, any research, 

as well as any solution to the oil issue, must incorporate a minimum-impact approach, consistent 

 

 
Figure 1.2.  Map of the study area. a) Location of Pearl Harbor in relation to the main Hawaiian Island 

chain; b) Location of the USS Arizona Memorial in Pearl Harbor relative to Ford Island (Graphic courtesy of 
U.S. Geological Survey). 
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Figure 1.3.  The USS Arizona in the East River in New York City after launching in 1916 (USS Arizona 

Memorial Photo Archives). 
 

 

 
Figure 1.4.  USS Arizona exploding on December 7, 1941 (USS Arizona Memorial Photo Archives). 
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Figure 1.5.  USS Arizona burning after the Pearl Harbor attack (USS Arizona Memorial Photo Archives). 

 

 

 
Figure 1.6.  USS Abraham Lincoln’s officers and crew honoring USS Arizona, 2004 (USS Arizona Memorial). 
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with standard NPS policy (Russell and Murphy 1997), but with added respect due the ship as a 

tomb, or long-term preservation of the ship may be compromised.  Unnecessary 

disturbance to Arizona’s hull is likely to be seen by many as more problematic than the limited 

oil release now occurring, although managers will ultimately have to face the possibility of a 

large release Bunker C fuel oil.  Addressing the oil release problem within a site-preservation 

framework incorporated in this project provides the best balance of competing social values, and 

it has the highest probability of success for arriving at the best and most defensible solution for 

both issues while providing maximum preservation and protection.   

In addition to the particular issues surrounding the battleship itself, project principals 

designed the USS Arizona Preservation Project to serve as a model for intervention actions 

directed at other historic vessels leaking contaminants into the environment, and to produce 

results directly applicable to preservation and management of historical iron and steel vessels 

worldwide (Jeffery 2004).  Although the project focused on management concerns and collecting 

physical data necessary to make informed management decisions regarding USS Arizona, we 

planned and conducted the research project within an archeological framework and in the 

broader context of the archaeology of the Pearl Harbor attack (Delgado 1992; Gould 2000; 

Lenihan 1989b; Rodgers, et al. 1998). 

This chapter highlights previous research conducted on the site and outlines the origin of 

the current management-based research program on USS Arizona.  It begins by reviewing the 

rationale that led to the genesis of the USS Arizona Documentation Project in the early 1980s, 

and then traces the changing management needs to the present day and addresses the question of 

oil removal.  The chapter next details the interdisciplinary nature of the current project and the 

complex interactions of federal, state, and private partners involved.  Finally, it discusses the 

organization of the rest of this volume. 

 

PROJECT BACKGROUND AND RATIONALE 

 

Previous Research 

 

NPS preservation efforts on USS Arizona began when the first superintendent of the USS 

Arizona Memorial asked SRC to document the ship.  This request resulted in a five-year project  
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from 1983–1988 designed to address specific concerns from NPS managers responsible for the 

historic battleship and memorial (Lenihan 1989b).  In late 1980, the U.S. Congress created the 

USS Arizona Memorial as a unit of the National Park system and charged the new 

superintendent with two fundamental concerns:  interpretation and management (Cummins and 

Dickinson 1989:158).  When the NPS took over the Memorial’s operation from the Navy, the 

agency found it faced a nearly insatiable public curiosity about the Pearl Harbor attack overall, 

and USS Arizona specifically, and found it lacked answers to some very basic questions.  

Because tantalizingly little of Arizona is visible above the waterline, and all depictions of the 

ship were either of it on the surface or during the attack, the most often-asked question was some 

variation of “what does the ship look like now?”  In addition, although official Navy records 

attribute the damage and eventual sinking of the battleship to aerial bombs, there were 

eyewitnesses who insist they saw Arizona struck by at least one torpedo and saw a bomb 

penetrate the ship’s smoke stack.  Varying historical accounts about the events of December 7, 

1941 and the aftermath contributed to a general confusion about what really happened.  More 

than 40 years after Arizona’s sinking, fundamental questions lingered—questions that could 

potentially be answered by archeological investigation of the material remains in situ on the 

harbor bottom (Lenihan 1989a). 

In addition to public interpretation, the NPS’s other priority is resource management and 

historic preservation.  Before the NPS began managing Arizona there was little concern for the 

vessel’s preservation by the Navy, although memorialization efforts began soon after the war and 

led to construction of the present memorial in 1962.  With the Navy retaining ownership and 

NPS mandated to actively manage the site beginning in 1981, however, such basic questions as 

“what condition is the wreck in?” and “how quickly is it deteriorating?” needed to be addressed 

before the agency could make effective management decisions about how to treat the vessel’s 

remains.  Because Arizona is the final resting place for more than 900 sailors and marines, a 

significant management question becomes whether the site should be left alone to deteriorate 

naturally or whether the agency intervene to preserve the integrity of the tomb (Cummins and 

Dickinson 1989:163-164).  Although at the time the NPS, nor anyone else, had experience 

actively managing sunken steel vessels, it did have considerable experience with standing 

remains on archaeological sites and with historic structures.  With this background, from the 

beginning of its management tenure, the NPS treated Arizona as a structural archaeological site 
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and used archaeological methodology to provide answers to the agency’s questions, regarding 

both site interpretation and management.  In response to the practical needs of site managers, the 

two basic questions NPS archaeologists were asked by the Memorial superintendents during the 

1983–1988 project became “what’s there?” and, then, “what’s happening to what’s there?” 

(Lenihan 1989a). 

NPS researchers effectively answered the first question in 1984 by documenting the hull 

and producing of a series of detailed drawings, basically an archeological site map, based upon 

thousands of direct measurements (Lenihan and Murphy 1989:83-86)(Figure 1.7).  Not only are 

these images a powerful tool for public interpretation and understanding, they are also the 

foundation for all additional work on the ship.  From these archaeological drawings and 

additional detail, a scale model was created for the Memorial visitor center to allow visitors to 

visualize that once on the Memorial, they were standing directly over the remains of the 

battleship—it connected the few features visible above the water to the ship below (Figure 1.8).  

The drawings and model directly contribute to an interpretive scheme that highlights the 

reverential aspects of the site and presents enough information to visitors to allow them 

understand the site and “to construct their own meaning of the site while partaking in the general 

atmosphere of subdued restraint and poignancy” (Kelly 1996:56). 

The second question, “what’s happening to what’s there,” is essentially directed at 

determining the nature and rate of corrosion affecting Arizona’s steel hull, and is an extremely 

complex and multifaceted question that could not be easily answered.  Researchers in the 1980s 

addressed in situ corrosion of a submerged iron or steel shipwreck by collecting baseline data, 

including corrosion potential (Ecorr) of the steel hull using a bathycorrometer, essentially a sea 

water equivalent silver/silver chloride (Ag/AgCl) reference electrode—a critical data set for 

evaluating corrosion rate and by examining the concretion and biological organisms attached to 

the exterior hull (Henderson 1989, see also Chapter 5).  At the same time, the first two Memorial 

superintendents laid out a series of future research objectives based on serious management 

concerns—objectives that would guide the next phase of research that began in 1998 and that is 

reported on in this volume (Cummins and Dickinson 1989:167-168).  Cummins’s and 

Dickinson’s research questions provided the management framework for the USS Arizona 

Preservation Project. 
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Figure 1.7.  Scale drawings of USS Arizona (Drawing by NPS-SRC, 1984). 

 

 
Figure 1.8.  Scale model of USS Arizona produced from archeological scale drawings  

(NPS Photo by Brett Seymour) 
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Current Project Genesis 

 

Corrosion data collected in the 1980s and management needs for effective NPS 

stewardship suggested that future research should focus on four key areas.  First, conduct direct 

analysis of steel hull samples to determine corrosion rate variability across Arizona’s hull fabric.  

Second, determine the nature and exact mechanism of electrochemical corrosion in order to 

predict corrosion rates in areas not directly sampled or inaccessible to researchers, and develop a 

non-destructive methodology to test the predictive corrosion model.  Third, using original 

engineering plans and corrosion data, create a computer-based model to predict the hull’s current 

lifespan if there is no intervention.  And fourth, create a long-term management plan including 

environmental and structural monitoring of Arizona’s hull (Cummins and Dickinson 1989:167-

168).  Although these goals were outlined in 1989, change in management at the USS Arizona 

Memorial resulted in change in management priorities, and no systematic research was 

conducted nor any attempt to implement the 1989 research recommendations were undertaken 

until the late 1990s.  Kathy Billings became superintendent of the USS Arizona Memorial in 

1996 and immediately re-focused attention on earlier management goals and objectives, and in 

1998, SRC was tasked with implementing the 1989 research strategy.  SRC researchers quickly 

partnered with a variety of outside collaborators to leverage the limited available funding, but 

also realized a more secure funding base would be necessary to fully implement the 

comprehensive research program necessary to address management questions. 

Often overshadowing larger preservation issues is concern about the estimated 500,000 

gallons of oil still contained within Arizona’s bunkers.  The oil currently bubbles out of the ship 

one small drop at a time, each shaped like a marble-sized black pearl, totaling about 9–10 quarts 

a day.  Although Arizona has been leaking oil steadily since 1941, intense media attention 

surrounding the Pearl Harbor attack’s 60th anniversary in 2001, including three major television 

documentaries by National Geographic, Discovery Channel and History Channel, an article in 

National Geographic magazine (Vesilind 2001), and Disney’s epic World War II blockbuster 

Pearl Harbor focused public attention on the half-million gallons of oil remaining in Arizona’s 

corroding hull, which was unanimously described as a pending environmental calamity.  Based 

on media characterizations, the U.S. Navy began putting out feelers about the possibility of oil 

removal.  During preliminary discussions with U.S. Navy personnel in Pearl Harbor, NPS 

 10



USS Arizona  Chapter 1 

representatives suggested that before hasty, and possibly destructive, measures were taken to 

mitigate the potential environmental hazard, a comprehensive assessment of Arizona’s hull 

should be undertaken to determine a curve of deterioration and pinpoint exactly where the 

battleship currently falls on the curve (essentially, following the NPS manager’s 1989 

objectives).  This evaluation would allow NPS and Navy managers to make decisions about the 

ship based on sound scientific fact, not speculation and media dramatization.  The discussions 

and the concern of Deputy Under Secretary of Defense (Installations and Environment) 

Raymond F. Dubois, Jr. ultimately lead to project funding from the Department of Defense 

Legacy Resource Management Fund, which the NPS received from 2002–2005, to plan and 

execute a multi-year, interdisciplinary project to assess Arizona’s corrosion rate and evaluation 

the nature of the environmental hazard posed by the oil (Russell and Murphy 2003, 2004; 

Russell, et al. 2004).  This funding, which was about half that requested, was leveraged with 

funding sources from NPS-SRC, the NPS Systemwide Archeological Inventory Program, 

Arizona Memorial Museum Association, several academic institutions and corporate partners, to 

conduct the research presented in this report. 

Although the oil issue was the major impetus for project funding, primary research focus 

has always been to develop an overall, long-term preservation plan for Arizona, which would 

include investigating the hull’s corrosion rate to determine the possible timing of a major oil 

release.  The first step in the research process was to determine the corrosion rate of Arizona’s 

steel hull—how quickly the ship is deteriorating—and therefore, how long before the oil’s 

release becomes imminent.  To fully understand corrosion rate, it is necessary to know the 

precise mechanism of corrosion and the variables involved.  Understanding the corrosion 

mechanism and variables is necessary to extend measured corrosion rates to parts of the ship that 

are not directly accessible to researchers, such as the interior and areas of the hull below the 

harbor bottom.  Predicting corrosion rate in all parts of the hull, including those where it cannot 

be directly measured, is necessary for designing and constructing an accurate predictive model of 

hull deterioration.  Ultimately, this predictive model is the USS Arizona Preservation Project’s 

main product and project outcome (see Chapter 6). 
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Oil Removal versus Site Preservation 

 

Inevitably, however, we end up back at the question of oil removal:  should preservation 

of a historically and internationally-significant war grave take precedence over a potentially 

invasive environmental remediation?  USS Arizona’s significance is not merely historical, but is 

also symbolic.  As Edward T. Linenthal notes in his book Sacred Ground: Americans and Their 

Battlefields, battlefields, including Pearl Harbor, are “prime examples of sacred patriotic space 

where memories of the transformative power of war and the sacrificial heroism of the warrior are 

preserved….The urge to preserve and restore these holy places of the nation comes from an 

intuitive sense that the essence of America can be found in our sacred 

environments…[and]…these battlefields provide a conduit through which citizens are able to 

participate in the power of a heroic past – a past that continues to demand allegiance to its 

cherished principles” (Linenthal 1991:3-4).  Furthermore, Delgado (1989:169) notes, “Pearl 

Harbor, particularly the USS Arizona, has become a national shrine.  Pearl Harbor and every 

trace of the American forces that defended it are now imbued with an almost religious 

significance.”  More than 1.5 million people each year visit the Memorial, but “perhaps more 

important than the modern memorial that straddles Arizona is the battleship itself, which is the 

ultimate shrine.  Resting in the silt of Pearl Harbor, the USS Arizona is a naval memorial and a 

war grave.  It was the scene of tragedy, triumph and heroism….The wreck now serves as a 

‘temporal touchstone,’ drawing visitors who reflect on the tragedy of the Pearl Harbor attack…” 

(Delgado 1989:173).  In this regard, the site is an important part of the national consciousness. 

As we like to characterize the situation, if Arizona were any other ship in any other 

harbor, the oil may have already have been removed.  The U.S. Navy and several commercial 

firms have the technical capability to empty sunken ships of environmentally harmful fluids.  In 

2002, the U.S. Coast Guard and Titan Maritime, Inc. removed approximately 100,000 gallons of 

heavy fuel oil from SS Jacob Luckenbach, a cargo ship sunk in a collision off San Francisco in 

1953, although approximately 29,000 gallons remain (Luckenbach Trustee Council 2006).  The 

following year, the U.S. Navy Naval Sea Systems Command (NAVSEA) removed nearly 2 

million gallons of oil from USS Mississinewa (AO-59) a US Navy oiler, sunk on November 20, 

1944 in Ulithi Lagoon, Micronesia by a Kaiten (an Imperial Japanese Navy manned suicide 

torpedo with a 3,418-lb. warhead)(US Navy 2003).  These two vessels represent the range of 
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difficulty of oil removal, with Luckenbach the more difficult.  Both vessels are more than 100 

feet deep, and both had direct access to oil containment.  The Mississinewa removal was 

completely successful; the Luckenbach effort was not, although costing nearly $20 million.  Oil 

removal on USS Arizona would set the range of difficulty beyond that of Luckenbach, and oil 

removal without sacrificing the structure may not be possible.  The fact remains, however, that 

USS Arizona is not just any ship in any harbor, and other factors besides straightforward oil 

removal need to be considered. 

Although oil removal may be potentially possible, it would be an extremely invasive 

procedure.  Arizona’s fuel oil bunkers are spread across three deck levels as well as the double 

bottom, and arranged from bow to stern.  The bunkers are highly compartmentalized and 

individually piped, designed that way so as to prevent catastrophic fuel loss should one part of 

the battleship sustain a crippling blow.  There is no single fuel compartment or storage area, such 

as on the examples given above, so it is no simple job to “hot tap” the hull to remove the oil.  

Further complicating matters, all the fuel oil storage bunkers are beneath the present harbor 

bottom—the ship is sunk into the sediment of Pearl Harbor to its original waterline, making 

direct access to the bunkers impossible, and the vessel may be full of sediment in the lower 

areas.  Given that oil removal would likely be highly damaging and destructive course of action, 

the question remains, is this invasive and potentially damaging procedure appropriate or 

acceptable on a site of USS Arizona’s significance?  Would it be acceptable even if easier and 

less invasive?  Most, including the NPS, think not, at least not without considerably more 

information about the impact to the ship as a whole and the remains of its crew specifically.  

Given the national importance and symbolic significance of Arizona’s remains, at this point the 

balance is decidedly tipped in favor of historic preservation over correction of a minor 

environmental impact and an as yet unknown environmental hazard of catastrophic oil release.  

Determining the true nature of the hazard based on scientific investigation provided a major 

impetus for the project reported here. 

 Besides the question of oil removal, the other looming management question will be 

whether intervening in Arizona’s natural process of deterioration is warranted, feasible, or 

desirable.  Before weighing the benefits of a potentially very costly and unproven intervention, 

more information is necessary about various cathodic protection systems and their potential 

feasibility and effectiveness, as well as how they would affect interior spaces of the ship that 
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cannot be directly protected.  Oil remediation other than removal must be considered for the long 

term.  The decision as to whether it is in society’s interest to allow the ship to follow a natural 

course of deterioration, or to intervene in an attempt to prolong Arizona’s existence as a 

structure, remains to be made. 

 

PROJECT DESIGN AND PARTNERS 

 

The primary project focus was to acquire requisite data from the site and its environs to 

understand and characterize the complex corrosion and deterioration processes affecting 

Arizona’s hull, both internally and externally, and to model and predict the nature and rate of 

structural changes resulting from corrosion.  The research program, which is outlined in more 

detail in the next chapter, was designed to be a cumulative progression of multi-disciplinary 

investigative steps orchestrated by the NPS and incorporating a long-term management 

perspective.  Multiple lines of evidence were pursued simultaneously, some concurrently, some 

consecutively, each directly or indirectly linked to the others and to the overall project 

objectives.  Operationally, we followed a two-fold strategy of research combined with long-term 

monitoring.  Primary research was directed towards characterizing the overall corrosion 

processes and determining internal and external corrosion rates.  These data were required to 

develop a predictive model of how Arizona is deteriorating, when corrosion will reach the point 

where structural changes indicate imminent collapse and how that collapse will take place to 

provide predictability through monitoring.  Monitoring activities, which are ongoing, were 

initially aimed at collecting baseline data for inclusion in corrosion analysis, and are now being 

used to assess changing conditions over the long-term and to serve as a test for the validity of the 

mathematical model. 

The SRC provided project principals who had been involved in Arizona research from the 

early 1980s (see Lenihan 1989b).  We also partnered with other NPS programs (particularly the 

NPS Resources Inventory and Monitoring Division and NPS GPS Coordinator), military units 

(U.S. Navy, Mobile Salvage Diving Unit One, Naval Facilities Engineering Service Center, 

Navy Region Hawaii, Naval Station Pearl Harbor; U.S. Army, 29th Engineer Battalion Survey 

Platoon; and U.S. Air Force, Eglin Air Force Base), academic institutions and researchers 

(University of Nebraska, Lincoln; Medical University of South Carolina; Harvard University; 
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University of Michigan; and University of New Mexico), commercial companies (Discovery 

Channel; History Channel; HydroFlex; Inspection Technologies, Inc.; National Geographic 

Magazine and Television; Ocean Technology Systems; Titan Maritime, LLC; Trimble 

Navigation (+ surveying company), TruVue Imaging; USIA Drysuits, and VideoRay, Inc.), non-

profit organizations (Coastal Maritime Archaeology Resources and Arizona Memorial Museum 

Association), and other federal agencies (National Institute of Standards and Technology; 

National Oceanic and Atmospheric Administration; U.S. Geological Survey, Marine Facility; 

U.S. Geological Survey, Pacific Science Center; and Naval Historical Center) in addressing the 

multifaceted questions confronting managers responsible for both USS Arizona’s preservation 

and associated environmental risk.  This research partnership is an example of public and private 

institutions working together effectively for public benefit, and it serves as a model for 

combining resources to cost-efficiently address issues important to the American people. 

 

ORGANIZATION OF THE VOLUME 

 

 Conceptually, this report is divided into four sections.  Part I includes chapters that 

present background information necessary for understanding the development of the USS 

Arizona Preservation Project and for interpreting project results within their broader context.  In 

addition to this introductory chapter, Chapter 2 outlines a detailed research design, explaining 

each element of the research program in detail and discussing how each element contributes to 

the larger project goals.  This chapter is important for understanding why we chose the specific 

research directions that we did for the project.  The final chapter of Part I is a historical 

background chapter highlighting cultural site formation processes, which is vital for 

understanding how the site came to be in the physical condition it is today.  This chapter 

discusses battle damage, US Navy salvage from 1941 to 1943, early memorials and other 

structures erected on the hull, superstructure removal during the early 1960s in preparation for 

building the current memorial, and detailed analysis of final vessel configuration and post-

depositional salvage and how that has affected its present site condition and state. 

 The second part of the report consists of individual chapters focused on each of the 

primary research components.  Each chapter is authored by investigators from respective 

agencies and institutions who had primary research responsibility for each particular segment of 
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research.  The first chapter in Part II (Chapter 4), by researchers from the U.S. Geological 

Survey, outlines the environmental baseline for the site based on long-term deployment of 

oceanographic and environmental instruments that collected various parameters for more than a 

year.  Long-term data collected from outside the hull is combined with internal data collected 

with instruments mounted on a small, remotely operated vehicle (ROV) to give an overall 

environmental characterization of the site.  These data are critical for assessing the corrosion rate 

of the steel hull.   

The next chapter (Chapter 5), authored by researchers from the University of Nebraska, 

Lincoln, outlines the results of nearly a decade of corrosion research on Arizona’s hull.  It 

discusses the full array of theoretical, experimental, and practical applications of corrosion 

science deployed to understand the specific corrosion processes affecting the battleship, as well 

as our best determination of corrosion rate for different parts of the hull.   

Chapter 6 focuses on the Finite Element Analysis of Arizona’s hull conducted by 

scientists from the National Institute of Standards and Technology (NIST).  This analysis is the 

primary product of the USS Arizona Preservation Project, and represents the first time that such a 

detailed, computer-based finite element model (FEM) has been used in maritime archaeological 

research.  The chapter discusses the creation of the Arizona FEM by NIST, including 

assumptions and model parameters incorporated within the model, scenarios that were run, and 

implications for projections of long-range deterioration of the vessel. 

Chapter 7, contributed by Harvard University microbiologists, outlines the results of 

preliminary experimental research (not completed as yet because of partial funding) identifying 

the role of microbial induced corrosion in Arizona’s deterioration, particularly in oil-containing 

spaces deep inside the lower spaces of the ship.  This research offers a critical glimpse of the 

ship’s interior spaces that are completely inaccessible to researchers, and that were instead 

recreated in the laboratory to predict current conditions. 

The final chapter of Part II (Chapter 8) outlines a research program directed at 

characterizing Arizona’s oil, including identifying specific biomarker fingerprints to identify oil 

from Arizona, as well as an evaluation of oil leaking for various locations around the ship.  This 

chapter also examines and identifies a microbial film that covers oil trapped in compartment 

overheads, as well as stepping back to characterize the broader distribution of oil from Arizona 

around Pearl Harbor. 
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 The report’s third section (Part III) describes aspects of the on-going monitoring program 

on USS Arizona, primarily structural monitoring using high-resolution Global Positioning 

System (GPS) receivers capable of sub-centimeter accuracy, oil release measurements and 

artifact tracking.  This monitoring program, initiated in 2001 by SRC, will determine if Arizona’s 

remains are stable or if there is active movement, settling or shifting of the hull.  Subsequent 

occupations of our GPS monitoring network in 2003 and 2006 revealed no discernible 

movement.  The monitoring program is described in detail in Chapter 9.  In addition, as a control 

for geological factors that might be the cause of any future observed movement, Chapter 10 

discusses the research to establish a geological baseline through subsurface geophysical survey 

and through geotechnical analysis of both physical cores from around the battleship, and using 

advanced geophysical techniques to determine whether Arizona is supported by stable sediments. 

Full characterization of sediments immediately around and beneath Arizona serves as a critical 

control for evaluating any future structural movements that may be observed. 

 Finally, Part IV consists of summary, conclusions, and recommendations that have 

resulted from the overall research program to date.  Chapter 11 summarizes and evaluates the 

data within a site preservation framework, brings our multiple lines of evidence together in a 

comprehensive way to address our simple question, “what’s happening to what’s there?” and 

outlines a series of site preservation recommendations based on cumulative research results. 
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CHAPTER 2 
 
 
 
 
 
 
 
 
 
Research Design 
 
Matthew A. Russell and Larry E. Murphy  
 
 

 
 

INTRODUCTION 
 

Researchers from the National Park Service’s (NPS) Submerged Resources Center (SRC) 

designed the USS Arizona Preservation Project from the outset to be multi-year, interdisciplinary 

and cumulative, with each element contributing to provide the basic research required to make 

informed management decisions for long-term preservation and to minimize environmental 

hazard from fuel oil release.  In addition, we designed the project to serve as a model for 

interdisciplinary, management-based science that has direct application to preservation and 

management of historical iron and steel vessels worldwide, particularly serving as a guide for 

intervention actions directed at other historic vessels leaking contaminants into the environment. 

We viewed this research design not only as an overall guide for fieldwork and analyses, 

but also as a “living document” that continued to change and evolve as the research progressed, 

as analyses resolved some issues and as questions became more focused.  Even beyond this 

project, the NPS will continue to revise the research and monitoring on USS Arizona to 

incorporate evolving research approaches, results and questions.  This research design has had 

significant peer review in both academic publications and professional meetings:  portions of this 

research design have been previously published in Russell and Murphy (2003; 2004) and Russell 
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et al. (2004); it has been presented and discussed twice at the National Academy of Science, 

Ocean Studies Board subcommittee (Murphy 2002 and 2003); presented to the Society for 

Historical Archaeology (Murphy and Russell 2006); the George Wright Society (Murphy 2003); 

and it has been presented to many public and interested veteran groups, for example, the 60th 

Commemoration of the Pearl Harbor Conference in 2001 (Murphy 2001).  In addition, individual 

scientists involved in the USS Arizona Preservation Project developed research approaches and 

have presented findings and results to peer organizations and published in academic journals.  

These are discussed in appropriate chapters and a compilation of research results, presentations 

and publications is presented in the final chapter of the report. 

 

 GOALS AND OBJECTIVES 

 

The USS Arizona Preservation Project builds upon pioneering site documentation and 

research led by the National Park Service’s Submerged Cultural Resources Unit (later renamed 

SRC) in the 1980s.  The early SRC investigations initiated in situ documentation and study of 

large, submerged steel warships both in the U.S. and internationally (Lenihan 1989).  The current 

project, building upon work done in the 1980’s, was designed to provide a broad-based 

foundation for long-term preservation, management and monitoring of USS Arizona. 

The primary project focus was to acquire requisite data for understanding and 

characterizing the complex corrosion and deterioration processes affecting Arizona’s hull, both 

internally and externally, and to model and predict the nature and rate of structural changes 

resulting from corrosion.  Developing reasonable and effective management alternatives and 

deciding the most desirable actions, particularly those regarding intervention or rehabilitation, 

could not be effectively done without this information.  The current research program was 

viewed as a critical step in obtaining necessary scientific information upon which to make sound 

management decisions.  A central goal of this research was to develop and recommend short-

term and long-term management plans for site preservation based on the results of the research 

program. 

The USS Arizona Preservation Project addresses another important issue besides 

preservation of an internationally important site.  USS Arizona contains several hundred 

thousand gallons of fuel oil that has been slowly escaping since its loss in 1941.  This oil, a 
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potentially serious environmental hazard, is contained within the corroding hull.  Catastrophic 

oil release, although by all indications not imminent, is ultimately inevitable.  Understanding the 

complex hull corrosion processes, structural changes and oil release patterns offers the most 

effective and efficient method of mitigating this potential hazard.  One of the goals of this 

project, therefore, was to develop a research strategy for environmental impact risk assessment 

and abatement to address the oil issue. 

Because of the particular national importance of Arizona, any solution to the oil issue 

must incorporate a minimum-impact approach so that long-term site preservation will not be 

compromised.  We conducted all research and monitoring operations with the respect due an 

American war grave and with minimum impact to the site consistent with NPS principles of 

stewardship and preservation; no diver entered the vessel.  Addressing the oil release problem 

within a site-preservation framework provides the best balance between the competing social 

values of preservation and ecology, and it has the highest probability of arriving at the optimal 

solution for both issues. 

Unnecessary disturbance to Arizona’s hull is likely to be seen by many as more 

problematic than the limited oil release now occurring, although managers will ultimately have 

to face the possibility of a larger release.  This has in effect already been done.  Because of the 

nature of Pearl Harbor, there is extensive oil recovery capability staged at Pearl Harbor, and a 

contingent of practiced professionals stand ready as a response team for oil spills.   

 

PRINCIPAL RESEARCH DOMAINS AND METHODOLOGY 

 

The SRC provided project principals who have been involved in Arizona research from 

the early 1980s (see Lenihan 1989).  We also partnered with military units, researchers, 

academic institutions, commercial companies, research laboratories, professional societies and 

other federal agencies to address the multifaceted questions confronting managers responsible 

for both USS Arizona’s preservation and any associated environmental risk.  This research 

program was designed to be a cumulative progression of multi-disciplinary investigative steps.  

Multiple lines of evidence were pursued simultaneously, each directly or indirectly linked to the 

others and to the overall project objectives.  Operationally, the NPS followed a general strategy 
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of intensive research to develop a predictive model of hull deterioration that could be tested and 

revised and through long-term monitoring of critical variables.   

Primary research was directed towards characterizing overall corrosion processes and 

determining internal and external corrosion rates.  These data were required to develop the 

predictive model of how Arizona is deteriorating and when corrosion will reach the point where 

structural changes indicate imminent collapse and potential release of oil.  The study of iron and 

steel corrosion of historic material in marine environments began in the mid-1970s.  

Archeologists and conservation specialists in Australia conducted pioneering research on iron 

artifacts and later on iron and steel shipwreck deterioration and determined that the major factors 

affecting shipwreck corrosion are metal composition and metallurgical structure, marine growth, 

water composition, temperature, extent of water movement, seabed composition and depth of 

burial beneath the seabed (North and MacLeod 1987:68).  Collecting data necessary to 

characterize critical corrosion processes, building on our prior work on USS Arizona (Lenihan 

1989) and on the Australian experience, involved evaluating each of these factors, as well as 

identifying additional unrecognized complex and interrelated processes that affect corrosion in 

many different ways.  When attempting to determine the corrosion history of an object, it must 

be considered individually—there are very few oceanographic and environmental parameters 

that are uniform between sites.  However, during the course of this research we sought general 

principles and methods that could be applied from what was learned on Arizona to other legacy 

vessels containing contaminants, which is a global problem.  In addition to corrosion research, 

related research focused on the oil that remains trapped within Arizona’s hull and on the 

geological substrate supporting the ship. 

Data collection activities were aimed at not only characterizing the active processes, but 

also collecting baseline data for inclusion in corrosion analysis that could be used to assess 

changing conditions and rates over time.  These data were used to quantify various on-site 

conditions such as physical movement of the ship and oil release amounts.  Research and 

monitoring activities are broken down into individual research domains discussed below.  Each 

research domain either directly contributes to primary research goals or plays a key supporting 

role in project objectives.  All are interconnected on some level. 
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FINITE ELEMENT ANALYSIS 

 

Principal Questions:  How can the cumulative results of Arizona research be used for 

modeling and predicting long-term changes in the hull, and how and when will those changes 

occur?  Can a predictive model be developed that will allow incorporation of new data and 

information?  How do we validate such a model? 

Finite Element Analysis (FEA) was the principal research method used to produce the 

primary predictive tool that forms the centerpiece of USS Arizona research.  A Finite Element 

Model (FEM) is a computer-manipulated mathematical model that calculates theoretical stresses 

and shape changes in a structure under load using experimental variables based on 

observationally-derived data.  The FEM divides a complex solid into many small components 

called elements, each of which can be one of numerous simple shapes.  Properties for the 

material of each element are input into the software to describe the element’s behavior between 

its end (or finite) points (for example, mechanical properties, heat flow, density, etc.).  The end 

points of each “finite” element are called nodes.  Conditions are set regarding how nodes connect 

to one another and loads (known as boundary conditions) are added to the model.  As each 

individual element changes under different boundary conditions, it transmits a slightly changed 

boundary condition to neighboring elements, which then repeat the process.  The result are plots 

of displacements of nodes and calculated stresses in the structure at all points—taken in the 

aggregate, the displaced nodes and stresses of all the elements in the FEM offers a predictive 

model of stress and change under different conditions for an entire structure. 

For historical shipwrecks such as USS Arizona, an FEM allows manipulation of multiple 

variables, such as corrosion rate and hull thickness, to analyze loads and stresses on hull 

structure for predicting structural change, probable collapse rate, its nature, sequence and 

consequent impact on structures containing fuel oil.  In addition, the FEM provides a 

fundamental tool to evaluate consequences of proposed management alternatives involving 

structural intervention or preservation strategies.  There are particular difficulties in applying 

FEMs to shipwrecks, however.  Geometry is constantly changing due to ongoing corrosion, loads 

can be very complex, and load and corrosion interact in such a way as to increase the complexity 

of the model (for example, stress corrosion cracking).  There are ways to overcome these 

difficulties, but accurate data based on direct measurements and observations are of primary 
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importance.  For the model to be representative of actual conditions, input data such as structural 

dimensions and connections, corrosion rates and loads must be as precise as possible. 

Baseline FEM development was conducted by the National Institute of Standards and 

Technology (NIST) and focused on modeling the Arizona hull structure in its as-built original 

state for an 80-ft. cross-section, amidships from frame 70 to 90.  The 80-ft hull length selected 

for initial modeling represents the sternmost area affected by the blast that sank the vessel and 

the ensuing fire.  The reason for this selection is that it was believed to be conservative; that is, 

corrosion in this area would likely be highest, which would incorporate a conservative element 

into the model when applied to the remainder of the stern, which is in better shape.  For 

maximum precision, the entirety of the stern must be subjected to FEA based on direct corrosion 

rates.  Because this was pioneering research in the sense that FEA has not been applied to 

corrosion and deterioration of a historical shipwreck before, this preliminary model was a 

necessary step to refine and test methodologies for developing the overall model required for 

predicting present and projected future structural strength.  It is important to note that the great 

majority of the work in creating a FEM of a structure is in the generation of the model and mesh 

in the computer.  Remediation scenarios can then be tested and further stability studies can be 

made by simply changing the inputs and accounting for new measurements, ideas or to test other 

scenarios. 

  The next development stage of the FEM was to incorporate structural effects of the blast 

and fire that sank the vessel.  Modeling the structural changes to Arizona resulting from the 

explosion and subsequent fire that sank the ship was the logical starting point for understanding 

the vessel’s present condition and projecting its future condition and rate of deterioration.  

(Unfortunately, this portion of the research remains unfunded.)  

The final stage of FEM development incorporated external and internal corrosion and 

thickness measurements to complete the model of Arizona’s present condition and to allow 

researchers to extend the model into the future.  Predictions about current status and future 

collapse vary in accuracy depending on the detail of the input data, crafting the correct boundary 

conditions, and by minimizing simplifying assumptions.  For the first issue, the greatest 

deficiency in data in this case was knowledge of the actual thickness and conditions of hull 

features both internally and below the present harbor bottom.  All other assumptions and 

simplifications have a much smaller effect on the results than these data.  The boundary 
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conditions were similarly difficult, as the hull is being supported by a water saturated semi-solid 

that moves relative to the hull.   

As the primary “product” of the current research program, much of the data collected 

during field work and as a result of the ongoing monitoring was designed to be fed directly into 

revising and refining the FEM to make it as accurate as possible.  When combined with 

corrosion rates and other variables, the model provides predictability required for evaluating 

timing, necessity and long-range consequences of management actions. 

If monitoring change in Arizona’s structure over time conforms well with changes 

predicted by the FEM, researchers will have confidence in extending the model’s predictions to 

areas of the ship (such as the lower decks) that are difficult to access directly for monitoring 

purposes.  If monitoring changes does not accord well with the predictions of the FEM, the 

disjunction between real and predicted behavior will alert researchers to modify the FEM, gather 

new data that may have been overlooked in the initial model, or both.  Beyond the course of this 

investigation, we anticipate a dynamic give and take between the FEM and ongoing research.  

 

CORROSION ANALYSIS 

 

Principal Questions:  What is the nature and rate of corrosion taking place on Arizona?  

How does concretion formation affect corrosion rate?  Is there a difference in corrosion rate 

among the 1916 steel, the 1930 refit materials, and structure affected by the blast and fires?  

Corrosion research on USS Arizona focused on understanding and characterizing the 

specific nature of corrosion occurring on the vessel and determining the corrosion rate for 

different structural elements of the ship.  The goal was to establish a curve of deterioration and 

“plot” where Arizona currently falls on that curve.  The rate of corrosion is a crucial parameter 

necessary for making long-term predictions about Arizona’s structural integrity using the FEM.  

Because the battleship is a large, complex three-dimensional structure, and it is impossible to 

directly measure corrosion rates for all critical elements, (currently, there are more than 52,000 

elements in the FEM) there was necessarily some generalizing and use of inferential data to 

derive deterioration rates, particularly for inaccessible internal structures.  In addition, a 

comprehensive understanding of all relevant parameters, such as hull steel chemistry and 
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microstructure, constituent analysis of concretion covering the ship and seawater chemistry, was 

necessary for making indirect estimates of overall corrosion rates. 

The most accurate measure of corrosion rate at our disposal was to compare current 

structural steel thickness with original thickness found on ship’s plans, determine how much 

metal has been lost over a specific period of time and use the calculated corrosion rate in a linear 

extrapolation to determine overall corrosion rate for that particular location.  Cumulative 

corrosion analyses ultimately may provide a more accurate variable rate.  Present indications are 

that corrosion rates are initially high soon after submergence, and then they decrease 

significantly.   

Although it was possible to remove some small (10 cm, 4-in. diameter) hull samples 

(coupons) for direct comparison, in most cases it was not feasible to take direct measurements of 

steel hull thickness because of the destructive nature of the process and inaccessibility of interior 

features.  Because research on Arizona must be carried out in the most non-invasive manner 

possible, other less-destructive methods for calculating corrosion rate, including ultrasonic 

thickness measurements, had to be devised, some of which will rely on inferences made from the 

few direct measurements we had and by comparing other variables critical to the corrosion 

process.  Because the physical environment plays such a large role in how corrosion takes place, 

baseline environmental data are important in general (see below), but specifically the 

environment at the hull/concretion interface had to be characterized since that is where corrosion 

occurs (Johnson et al., this volume). 

 

Exterior Corrosion Analysis 

 

Metallurgical and Metallographic Analysis 

 

 Metallurgical and metallographic analyses were designed to establish basic chemical, 

structural and strength characteristics of steel used in Arizona’s original 1914–1915 construction 

and later 1929–1931 reconstruction.  Investigation of steel hull samples was a necessary step 

towards determining corrosion nature and rate.  Analysis originally focused on steel collected 

from superstructure elements stored on land at Waipio Point, Hawaii that were removed from 

Arizona before construction of the Memorial began in 1960.  Samples from both the 1914–1915 
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and 1929–1931 construction periods were analyzed by scientists from University of Nebraska, 

Lincoln (UNL).  Tests performed include chemical constituent analysis, microstructural 

examination and Charpy impact testing to determine basic strength characteristics (Johnson, et 

al. 2000).   

Additional metallurgical and metallographic analyses were performed on hull coupons 

collected in situ from Arizona’s hull.  Four-inch (10 cm) diameter hull samples, including intact 

exterior and interior concretion, were removed using a purpose-built hydraulic-powered hole 

saw.  A total of eight coupons were removed from external, vertical hull locations on both port 

and starboard sides.  On each side, one sample was taken at the Upper Deck level, near the water 

line; from the Second Deck level, above the torpedo blister; from the Third Deck level, in the 

torpedo blister; and from the First Platform level, in the torpedo blister and below the mud line.  

After removal, each location was plugged using a standard plumber’s plastic pipe plug and 

sealed with marine epoxy to prevent formation of a localized corrosion cell.  UNL researchers 

used standard metallographic methods to examine the hull coupons to measure metal thickness at 

Rail Sciences Laboratories in Omaha, Nebraska (Johnson et al., this volume).  Additional 

metallurgical and metallographic analyses on the same samples were performed by researchers 

from NIST. 

 

Concretion Analysis 

 

Fundamental research into the composition and characteristics of the concretion covering 

Arizona’s outer hull was conducted to aid in understanding the kinetics of the corrosion process 

on the ship and to determine how concretion chemistry correlates with hull metal loss.  The hard 

layer of concretion that forms on iron and steel objects in seawater is a combination of iron 

corrosion products and marine organisms.  Initial organisms are pioneering coralline algae that 

leave layers of calcium carbonate when they die.  The calcium carbonate residue is overlaid by 

subsequent layers of coralline algae, and the increasing calcium carbonate layers forms a suitable 

substrate for secondary growth, such as soft corals and mollusks (Henderson 1989; North 

1976:254).  Outwardly diffusing iron ions replace some of the calcium resulting in a mix of iron 

corrosion products, calcium carbonate and living marine organisms covering the iron or steel 

object.  The concretion forms a semi-permeable barrier between the bare metal and seawater and 
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has a significant influence on corrosion by reducing the amount of dissolved oxygen available 

for the corrosion reaction, increasing acidity at the metal-concretion interface and increasing the 

chloride ion concentration (North 1976:253). 

Concretion investigation on USS Arizona focused on x-ray diffraction to isolate 

compounds that make up the concretion and environmental scanning electron microscopy 

(ESEM) to determine relative percentages of each element.  X-ray diffraction was conducted by 

the Air Force Research Laboratory, Eglin Air Force Base, while ESEM analysis was completed 

by the Composite Materials and Structures Center at Michigan State University.  Preliminary 

results of Arizona’s concretion analysis are consistent with North’s (1976) findings that 

concretion formed on wrought and cast iron structures contains the mineral siderite, which is 

formed by the exchange of iron ions for calcium ions.  UNL scientists researched how density 

and electrical resistivity of Arizona’s outer hull concretion could be used to characterize the 

corrosion process and how concretion analysis could be used to indirectly infer corrosion rates, a 

technique applicable to other sites. 

 

In Situ Hull Corrosion Measurements 

 

When iron or steel is placed in seawater, corrosion begins as a reaction in which the 

oxidation of metal forms the anodic portion of a corrosion cell, and the consumption of oxygen 

forms the reduction, or cathodic, part of the reaction.  When oxidation and reduction rates are 

equal, there will be a voltage that characterizes the specific reaction rate (or corrosion rate)—that 

characteristic voltage is known as the corrosion potential (Ecorr).  In general, a more negative Ecorr 

value indicates a lower corrosion rate while a more positive Ecorr indicates a higher corrosion rate 

(MacLeod 1987:49-50). 

In situ Ecorr was measured on Arizona’s hull using a silver-silver chloride (Ag/AgCl) 

reference electrode giving a voltage measurement in millvolts (mV).  In addition to Ecorr, pH is 

another critical parameter giving an indication of corrosion, and the combined data can be 

directly related to appropriate Pourbaix Diagrams. The Pourbaix Diagram, a two dimensional 

map of Ecorr vs. pH, shows  regions of stability for corrosion products as a function of Ecorr and 

pH and identifies limits for corrosion, immunity from corrosion or limits for formation of 

protective layers on the metal surface.  Diagrams for iron/water and iron/water/CO2 are 
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especially useful in characterizing corrosion processes at the steel/concretion interface and into 

the concretion itself (Johnson et al., this volume).  In normal seawater, pH ranges from 7.5 to 8.2, 

but levels below 6.5 and as low as 4.8 are found under concretion covering actively corroding 

metal.  Lower pH levels (more acidic) typically characterize increased corrosion levels (North 

and MacLeod 1987:74). 

In situ corrosion measurements taken systematically along Arizona’s hull included pH 

and Ecorr.  At selected stations on the vessel, pH and Ecorr was measured at various concretion-

depths using pH and Ag/AgCl reference electrodes inserted into holes drilled into the concretion.  

Hole depths were controlled by several depth jigs to provide uniform data through levels of 

concretion to the metal surface.  Multiple samples were drilled in a vertical transect at each 

station at varying water depths to characterize how the corrosion process changes with water 

depth and concretion thickness.  In addition, these data were compared over multiple field 

seasons.  Correlation of Ecorr with corrosion rate was also examined (Johnson et al., this volume). 

Another critical in situ measurement of USS Arizona’s hull included ultrasonic thickness 

measurements.  The eight hull coupons collected in two vertical transects on Arizona’s hull 

provided an empirical measure of corrosion rate at each of these locations when compared to as-

built hull thicknesses.  Because of the invasive nature of collecting hull coupons, however, it was 

necessary to develop a more non-invasive technique to expand hull thickness data.  Because the 

specific metal thickness was precisely measured at the eight coupons locations, they provided an 

excellent control for testing ultrasonic thickness techniques and instruments.  Corrosion pits on 

the interior and exterior of Arizona’s steel plates made ultrasonic measurements of plate 

thickness impractical with current technology, and ultimately, other methods, including 

corrosion rate based on concretion parameters, proved more reliable. 

 

Interior Corrosion Analysis 

 

Analysis of the nature and rate of interior corrosion on USS Arizona was limited to 

indirect measurements of environmental parameters and Ecorr, subjective observation of interior 

conditions based on images taken by a VideoRay remote operated vehicle (ROV), and 

experimental evaluation of ultrasonic thickness techniques using the ROV as an instrument 

platform.  With no diver access to the inside of Arizona’s hull, interior data could only be 
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collected remotely.  The VideoRay ROV was the primary tool used for collecting internal data.  

It was used as an instrument platform to carry a YSI 600XLM Multiparameter Sonde to measure 

pH, temperature, salinity, dissolved oxygen, oxygen reduction potential and conductivity—the 

same parameters being recorded externally (see below).  The ROV also carried a GMC 

STAPERM silver-silver chloride reference electrode to measure interior Ecorr.  An evaluation was 

made for use of an ROV-mounted Cygnus Ultrasonic Thickness Gauge to measure interior 

bulkhead thicknesses, but this technology did not prove suitable for this application.  

 

OIL ANALYSES 

 

Principal Questions:  What is the nature of Arizona’s oil?  How and at what rate does it 

degrade?  What is its impact on the immediate environment of the ship?  Is there a “fingerprint” 

that distinguishes Arizona oil from others?  How do we measure oil leak volume? 

Analysis of oil leaking from Arizona’s hull and trapped in accessible overhead spaces 

was designed to collect baseline data about the approximately 500,000 gallons of Bunker C fuel 

oil still remaining within the battleship.  It was also used indirectly to investigate the condition of 

interior oil bunkers.  Collaborative research focused on using oil characterization to measure 

environmental degradation of oil trapped within different areas of Arizona’s hull.  Oil constituent 

degradation, laboratory determined, proved a useful chronometric tool.  The degradation of oil 

was used to determine residence time of each oil cache by determining the length of time each 

oil release has been in contact with seawater.  Medical University of South Carolina (MUSC) 

researchers analyzed oil samples using gas chromatography coupled to mass spectrometry in 

order to assess the environmental weathering of the oil and to obtain a “fingerprint” of the oil 

leaking from the ship by examining the biomarker profile.  While Bunker C is susceptible to 

biotic and abiotic weathering processes in the environment, it tends to be persistent due to the 

increased concentration of high molecular weight hydrocarbons.  Using gas chromatography-

flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) to 

chemically characterize oil leaking from different regions of the ship, researchers determined 

that oil leaking near Barbette No. 4 showed almost no detectable signs of weathering, while oil 

trapped in Second Deck overheads and leaking from other locations were depleted of n-alkanes 

and low molecular weight polycyclic aromatic hydrocarbons.  Results of analyses could 
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differentiate individual oil bunkers, as well as differentiate age of oil (relative to sea water 

exposure) in cabin overheads and being released from various locations around the battleship.  

These data have important implications for structural analysis and inferring structural change in 

the inaccessible interior.  This approach provided indicators about the state of deterioration and 

structural changes of oil bunkers that are inaccessible in the battleship’s lower deck areas. 

In addition to baseline oil analysis, on-going monitoring is being conducted to measure 

the amount of oil escaping from the ship at several locations.  Using a custom-built oil collection 

device, researchers periodically capture all oil escaping from each location around Arizona’s hull 

during a 24-hour collection period.  This quantifies the leakage rate for long-term monitoring to 

see whether oil leakage from specific locations is stable or increasing.  Currently, we are 

collaborating on development of a remote oil monitoring system that can quantify the total 

amount of oil being released in real-time, as well as variations in oil release rates that may 

correlate with changing environmental conditions, changing hull structure or both. 

 

MICROBIOLOGY 

 

Principal Questions:  What microbially induced corrosion is taking place in Arizona’s 

interior and exterior areas, and what is the impact on structural deterioration?  Can laboratory 

experimentation model microbially induced corrosion on the oil/bunker interface? 

Microbiological analyses were pursued for several purposes.  One of the main 

applications was to examine the role of microbially induced corrosion (MIC) in the degradation 

of Arizona’s oil bunkers.  Biofilms are communities of microorganisms attached to an interface 

and embedded in a polysaccharide matrix produced by the microorganisms.  They are ubiquitous 

in nature and are a common cause of corrosion.  The depletion of oxygen from microhabitats 

within biofilms has important consequences for the corrosion of metals.  Anaerobic conditions 

can result in the growth of sulfate-reducing bacteria (SRB), a frequent cause of MIC.  Metal 

corrosion is driven by the hydrogenase activity of the SRB.  Harvard University researchers 

experimentally determined the ability of hydrocarbon degrading microorganisms isolated from 

USS Arizona to degrade steel.  The objective was to determine the rate of corrosion in the oil-

containing bunkers in USS Arizona. 
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In addition to research into MIC, other microbiological investigations were carried out on 

USS Arizona.  MUSC scientists developed innovative research to examine the role of 

microorganisms in fuel oil degradation and the aerobic biodegradation potential of 

microorganisms associated with the battleship’s hull (Figure 2.5).  They used denaturing gradient 

gel electrophoresis (DGGE) analysis to examine the microbial community structure of oil-

degrading microorganisms from sediments adjacent to the USS Arizona that use oil leaking from 

the ship as their sole source of carbon.  The biodegradation potential of these microbial 

communities was demonstrated by the extensive degradation of polycyclic aromatic 

hydrocarbons from Bunker C crude and produced a novel pattern of biomarker degradation. 

 

GEOLOGICAL ANALYSES 

 

Principal Question: How stable are the sediments upon which Arizona rests? 

The U.S. Geological Survey (USGS) conducted an analysis of the geological substrate 

surrounding and beneath USS Arizona to determine its nature and characteristics.  The basic 

question investigated was how stable are supporting sediments beneath the battleship, and is it 

possible Arizona is experiencing movement due to shifting or compressing sediments?  Arizona’s 

overall stability within its supporting matrix is important because it can potentially affect GPS 

structural monitoring and the FEM.  To be accurate, interpretation of GPS monitoring-point 

movement and predictions regarding structural stability, such as those produced from an FEM, 

must control for geological support variables.  If movement is observed in GPS monitoring, it 

would be necessary to isolate potential internal changes (shifting, settling and collapsing decks 

and internal bulkheads) from external movement (the entire ship settling into surrounding 

sediments).  In addition, the FEM had to take into account sediment characteristics surrounding 

and supporting Arizona’s hull, including potential differential support, to give an accurate 

indication of the vessel’s overall structural integrity. 

 To conduct a comprehensive analysis of the geological substrate around USS Arizona, 

researchers used a combination of geophysical remote sensing and geotechnical analysis of 

recovered 15-m (50-ft) cores.  Stratigraphic description and geotechnical analysis of cores 

recovered from around Arizona provided data about sediment consolidation, compression 

properties and triaxial shear strength of distinct strata beneath the seabed.  Chirp seismic 
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reflection data collected in a wide area surrounding Arizona, combined with precise correlation 

of sub-bottom records to geological core analysis, extend these geotechnical properties to the 

subsurface geological strata of Pearl Harbor surrounding the battleship.  The combination of 

these data gave an overall indication of how stable Arizona is within its supporting geological 

matrix. 

 

ENVIRONMENTAL PARAMETERS 

 

Principal Questions:  What is the nature of the interior and exterior environment of 

Arizona? How is Arizona’s environment changing?  How does it affect Arizona’s deterioration? 

A variety of factors have been identified that directly influence metal corrosion on 

shipwrecks, including water composition (dissolved oxygen, pH, salinity and conductivity), 

temperature and extent of water movement (North and MacLeod 1987:68).   

Oxygen reduction is typically the main cathodic reaction occurring in steel exposed to 

seawater, so dissolved oxygen availability at the cathodic site controls the corrosion rate, with 

higher dissolved oxygen content resulting in higher corrosion.  Water at the ocean’s surface is 

generally oxygen-saturated, so overall dissolved oxygen content depends on the amount of 

mixing that occurs with surface water—increased water movement and mixing results in 

elevated dissolved oxygen levels.  In addition, temperature and dissolved oxygen are inversely 

proportional, so lower temperature results in increased dissolved oxygen.  The pH level is 

indicative of overall corrosion activity.  In normal seawater, pH ranges from 7.5 to 8.2, but levels 

below 6.5 are found under concretion covering actively corroding metal.  Lower pH levels (more 

acidic) typically characterize active or increased corrosion levels.  Salinity is closely related to 

the corrosion rate of steel in water, so increased salinity usually results in higher corrosion rates.  

This is evident when comparing metal preservation in freshwater compared to seawater 

environments—freshwater lakes invariably lead to better preservation of iron and steel.  There 

are several ways that higher salinity affects corrosion, including dramatically increasing 

conductivity (which facilitates movement of ion between anodic and cathodic areas), increasing 

dissolved oxygen and supplying ions that can catalyze corrosion reactions, among others (North 

and MacLeod 1987:74).  Higher conductivity can increase corrosion by increasing the movement 

of ions during the corrosion process. 
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In general, corrosion increases as temperature increases.  Under controlled laboratory 

conditions, corrosion rate doubles for every 10°C rise in temperature.  This relationship is 

complicated, however, by the effect of temperature on both dissolved oxygen and biological 

growth.  Warmer water supports increased marine growth, which contributes to concretion 

formation on steel in seawater and that, in turn, generally reduces corrosion rates.  In addition, as 

discussed above, lower temperature results in higher dissolved oxygen content, which 

consequently means increased corrosion (North and MacLeod 1987:74). 

Water movement from waves and currents on a site affects corrosion in several ways, but 

generally high-energy environmental conditions results in higher corrosion rates.  Active water 

movement can contribute to mechanical erosion of metal surfaces and can also impede 

development of protective concretion layers by removing accumulating ions before they can 

precipitate and begin the concretion formation process.  Waves and currents also contribute to 

water mixing and aeration that result in increased dissolved oxygen levels (North and MacLeod 

1987:74). 

Factors that affect corrosion on metal shipwrecks are complicated and interrelated.  

Reducing one key factor can increase another, and the results are often unpredictable.  It is clear, 

however, that in order to understand the corrosion history of an object, even a complex object 

like a World War II battleship, and to begin to define the nature and rate of deterioration 

affecting the object, an understanding of the various environmental factors at play is necessary.  

An important aspect of the current research program was long-term monitoring of oceanographic 

and environmental parameters on USS Arizona.  This was accomplished with in situ 

multiparameter instruments placed on the hull and on the seabed to the side of the vessel. 

 

Exterior Environment 

 

 The USGS analyzed data from oceanographic and water-quality monitoring instruments 

placed on and near Arizona to determine long-term, seasonal variability in key parameters that 

affect corrosion.  Researchers calibrated and deployed a SonTek Triton wave-height and current 

meter and a YSI 6600 Multiparameter Sonde on Arizona in November 2002.  These instruments 

have internal memory and batteries and can be left in situ for up to 60 days, recording data 

multiple times an hour.  The instruments were retrieved and downloaded, then recalibrated and 
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deployed every 60 days by USAR staff.  The data were sent to the SRC in Santa Fe, New 

Mexico, and the USGS in Santa Cruz, California, for compilation and analysis.  The instruments 

collected baseline data including wave height and direction and current velocity and direction 

around the vessel, and basic environmental parameters including pH, temperature, salinity, 

dissolved oxygen, oxygen reduction potential and conductivity.  The goal was to collect at least a 

two-year database to discern seasonal variation and patterns of environmental parameters within 

Pearl Harbor.  In addition, USGS researchers deployed two RD instruments 600 kHz Acoustic 

Doppler Current profilers (ADCP), which collected three-dimensional vertical profile 

measurements of current speed and direction, single-point measurements of water temperature, 

and water level data, for a 30 day period in 2005.  As discussed above, each of these parameters 

can affect corrosion rates on the ship. 

 

Interior Environment 

 

Environmental monitoring was also conducted within Arizona’s interior cabins to 

determine internal environmental conditions.  Internal conditions were compared to external 

conditions in an attempt to infer interior corrosion nature and rate.  These data were critical to 

developing a viable FEM that takes into account both interior and exterior hull corrosion.  SRC 

used a VideoRay ROV equipped with a YSI 600XLM Multiparameter Sonde to measure pH, 

temperature, salinity, dissolved oxygen, oxygen reduction potential and conductivity—the same 

parameters recorded externally.  Initial investigations focused on second deck cabins accessible 

via open portholes, as well as inside Barbette No. 3.  Subsequent investigations recorded 

environmental parameters in Third Deck spaces—although very few of these areas were 

accessible to the ROV.  Data from both external and internal environmental monitoring was 

assessed, and the results were factored in developing the Arizona FEM. 

 

STRUCTURAL STABILITY DETERMINATION  

 

Principal Questions:  How stable is Arizona’s hull?  How can we measure structural 

changes? 
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Monitoring observable changes to USS Arizona’s accessible external areas was designed 

to allow researchers and managers to quantify physical changes to Arizona’s fabric.  As internal 

and external structures corrode and weaken, various parts of Arizona’s hull may experience 

shifting, settling or collapse.  Since a regular NPS presence on Arizona began in 1982, a 

qualitative assessment by researchers indicated that Upper Deck areas in and around the ship’s 

galley show signs of change—widening cracks and some deck collapse is occurring.  At present, 

measurable change has only occurred to non-structural portions of the vessel—“non-structural” 

in the sense that Upper Deck areas do not contribute to the battleship’s overall structural 

integrity, especially oil-containing structures.  Most Upper Deck structures were removed from 

Arizona before construction of the Memorial, which spans the ship just aft of the galley area.  

Regardless, active monitoring of the entire ship, including these Upper Deck areas, is ongoing 

still to watch for evidence of significant structural changes. 

 

External Stability 

 

The primary method used to monitor physical changes to USS Arizona’s hull is a series 

of discrete real-world positions on the ship whose coordinates are derived using very high-

resolution Global Positioning System (GPS) instruments.  Using dual-frequency GPS receivers, 

researchers have set a series of monitoring points across Arizona’s exposed decks.  Initially using 

stainless steel studs, later changed to PVC disks, in selected locations, NPS surveyors leveled a 

large, purpose-built underwater tripod over each point (Figure 2.6).  Extension poles set on top of 

the tripod extending above the water’s surface allowed the GPS antenna to be placed precisely 

over the desired point.  Using advanced survey techniques, each point was collected with sub-

centimeter accuracy in three dimensions.  These points were, and continue to be, re-surveyed 

every two years to determine if, and how, the ship is moving, shifting, or settling.  Although the 

accuracy of each point was mathematically calculated to about 0.5 cm (Circle of Error Probable), 

it will be necessary to apply a more conservative threshold of change to future monitoring re-

occupations.  Because of environmental conditions and differences in equipment and stadia 

variations, a more realistic threshold is 10 cm.  Instrument error, set-up error, or most likely, 

nearly imperceptible antenna movement caused by water movement can create cumulative errors 

of up to 10 cm.  Consequently, we cannot reliably attribute any observed change that is less than 
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10 cm to vessel movement; however, corroborative evidence would be sought for any level of 

change.  Because the GPS points exist as a network of positions, aggregate changes in the 

positions of more than one point, even if less than 10 cm, could potentially indicate net 

movement of hull structure. 

In addition to GPS, structural changes were also monitored using a series of crack 

monitors normally employed to measure how cracks are widening on historic building walls.  

These plastic monitors were affixed over numerous cracks in the Upper Deck galley where 

Arizona’s deck collapse was qualitatively observed.  The crack monitors were checked 

periodically to see if the cracks were widening or shifting. 

 

Internal Stability 

 

 Internal structural monitoring of USS Arizona was a qualitative process using the 

VideoRay ROV to visually examine interior areas and note observable changes over time.  

Interior investigation took place over multiple years in all accessible areas for measuring and 

monitoring interior environmental factors and corrosion parameters.  During this process, overall 

internal structural condition was observed and noted. 

 

CONCLUSION 

 

This research approach for USS Arizona and USS Utah was designed to produce 

cumulative data whose synthesis will inform management actions to preserve the vessel for 

future generations.  We believe this experimental approach has produced results that will 

contribute to the disciplines involved and be applicable to numerous iron and steel legacy vessels 

submerged worldwide.  This research partnership for the Pearl Harbor vessels is an example of 

government agencies, academic institutions, military commands and private institutions working 

together effectively for public benefit.  This collaboration is a model for combining public and 

private resources to cost-efficiently address issues important to the American people. 
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CHAPTER 3 
 
 
 
 
 
 
 
 
 
Historical Record: USS Arizona Battle Damage and Salvage  
 
Larry E. Murphy and Matthew A. Russell 

 
 
 
 

INTRODUCTION 
  

Examination of primary documents about USS Arizona, particularly post-sinking salvage, 

was planned as part of the initial research design of the USS Arizona Preservation Project for a 

number of reasons.  Several aspects of the ship’s history have direct impact on a number of 

research domains, especially those regarding metallurgical analyses and corrosion 

characterization.  The ship, launched June 19, 1915, underwent a major refit in 1929–1931 (Lott 

1978:21-37) (Figure 3.1).  The ship suffered high explosive blast effects on December 7, 1941, 

and it burned intensely for two days before oil and explosives fires could be extinguished.   It is 

important to the research questions to distinguish locations of blast and fire impact on the 

physical structure.  This impact must also be incorporated into the primary product of the USS 

Arizona Preservation Project, which is the Finite Element Model (FEM, see Chapter 6) being 

developed to provide the predictability requisite for management decisions about the ship.  To 

develop both an accurate and conservative predictive model of Arizona’s deterioration, we had to 

be certain about which metallurgical samples to collect and analyze and where to take corrosion 

readings and understand their implications for inclusion in the FEM.  Because it was impractical 

to initially model the entire remainder of the hull, a portion of the hull was selected to develop 
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the FEM to test the process and to establish a likely curve of deterioration of the remaining intact 

hull.  In the long-term, an FEM will be required for the entire ship that incorporates cumulative 

corrosion and experimental data relevant to hull deterioration.  Analysis of historical documents 

describing Arizona's hull damage soon after the attack and what salvage activities were 

conducted is discussed in this chapter.  These historically based factors have been incorporated 

into both the sample design and in the FEM.  They will also be important to developing the 

future complete-hull FEM.   

 

ARIZONA’S CONDITION BEFORE AND DURING THE ATTACK 

 

 It is critical to know what Arizona's condition was at the time of the attack on December 

7, 1941.  Two aspects are of primary interest: the amount of fuel aboard and the status of hatches 

and passageways in the hull.   The former is necessary to develop an estimate as to the amount of 

oil that may remain on the site, and the latter addresses ease of access of interior spaces for 

measurement, monitoring or physical intervention within the hull.  As a matter of National Park 

Service (NPS) policy, because of the status of Arizona as a war grave and National Historic 

Landmark, and also as a matter of safety, no divers entered the hull during this research project.   

All interior examination and data acquisition was by a VideoRay Remotely Operated Vehicle 

(ROV).   The nature of the blast in the forward portion of the ship is also discussed here.  

 

 
 

Figure 3.1.  Transverse sections showing some of the structural changes to Arizona’s hull during 1929-1931 
refit (USS Arizona Memorial Archives).  
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ESTIMATE OF OIL CONTAINED IN ARIZONA’S HULL  

 

We have not located documents that indicate the amount of fuel Arizona had on board at 

the time of the attack.  The statement by Commander Homann (1942a:2) “The outboard fuel oil 

tanks were filled to ninety-five percent capacity in the area of the possible torpedo hit” indicates 

the vessel may have been near emergency capacity.   

Before the attack, Arizona’s draft forward was 32 ft. 6 in., while aft it was 33 ft. (Homann 

1942a:1: Geiselman 1941:1).  Draft measurements obtained just prior to the attack inform about 

the status of fuel that was aboard Arizona at the time of the attack.   

 The specific gravity of Bunker C No. 6 Fuel Oil is approximately 0.95, the higher end of 

the range for petroleum products.  The common conversion factor for petroleum hydrocarbons of 

294 gallons per ton is derived from an average specific gravity of 0.83. (National Research 

Council 2003:189-190).  However, using the actual specific gravity for Bunker C of 0.95, 

Bunker C weighs about 7.6 lbs. per gal., and there would be only 263 gal. per ton.  The latter 

figure is used here for Arizona oil calculations.  The full load draft for the ship was 30 ft. 1¾ in. 

with a 4,630-ton normal load of fuel oil; emergency load draft was 33 ft. 3 in. with emergency 

load of fuel of 6,180 tons (Lott 1978:50).  According to the battle reports, Arizona’s draft was 

about 33 ft. (Homann 1942a:1: Geiselman 1941b:1), which indicates nearly a full emergency 

load of fuel.  An estimate of 6,000 tons of fuel aboard Arizona equals approximately 1,578,000 

gal.  An early estimate of Arizona hull damage after the attack indicated about 40% of the aft 

portion of the hull was intact (Commander Base Force to Commander in Chief, Pacific Fleet 

December 28 1941:6), which would extend damage aft to about frame 85 (which correlates well 

with other estimates, for example Geiselman 1941:1, who estimated the ship was destroyed 

forward of frame 88).  This is somewhat less than divers’ reports of the ship being intact aft of 

frame 70 (but that the main deck was buckled forward of frame 88).  Assuming, however, the 

40% estimate correct, it would be reasonable to estimate perhaps 40% of the original oil bunkers 

would remain undamaged to a point sufficient to contain oil.  This means a reasonable estimate 

of the maximum oil remaining aboard Arizona is about 630,000 gal., or about 2,400 tons, less 

what has leaked since the vessel sank. 

 There is no direct mention of fuel oil fuel removal operations on Arizona in the original 

salvage documents reviewed so far.  However, Commander Homer N. Wallin, who relieved 
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James M. Steele’s command of the Pearl Harbor salvage operations January 9, 1942 and held 

that position until salvage operations were complete, reported in a summary of the salvage 

operations (1946:29) that “Fuel oil also was a most valuable commodity and a source scarce 

article in the spring of 1942.  Accordingly, a large amount of oil was pumped from the intact oil 

tanks of these vessels [Arizona and Utah], and about a million gallons was recovered from the 

Oklahoma.”  Certainly, not all, if any, fuel oil was removed; both Arizona and Utah continue to 

leak as they have since the attack.  In his later volume, Wallin (1968:268) does not mention oil 

removal from Arizona’s intact tanks, only that “the oil which fouled the harbor was gradually 

removed as it was released from the ship’s opened tanks.”  Further historical research is required 

to verify oil removal from these vessels and the quantity recovered during salvage operations.  

 

ARIZONA'S HULL CONDITION AT THE TIME OF ATTACK 

 

Arizona’s acting commanding officer A.J. Homann responded to queries from the Chief 

of Naval Operations regarding the condition on Arizona during and after the attack (Homann 

1942b).  The following discussion is from that document.  Homann’s response to Chief, Naval 

Operations was generated from interviews with survivors.  At the time of his statement, January 

28, 1942, divers had only investigated the main and second deck, so survivors’ accounts were 

used to augment direct diver observations.  At the time of the attack, all “X” (or “X-ray”) doors 

and fittings were closed, due to the previous night’s establishment of Material Condition X-Ray. 

Many of the engineering spaces, those not actually being used, were in Condition “Z” (or “Zed”) 

and locked. This included the shaft alleys, engine rooms, firerooms, but not the dynamo, 

evaporators, and ice machines.  The attack was so sudden, with the explosion of the forward 

magazine occurring so soon after the attack began, that little time was available for securing 

Condition Zed in those areas not already secured. 

Material Condition X-Ray was the damage control condition in peacetime, when 

steaming in time of war when attack was improbable or unlikely, or when in port where danger 

from torpedoes, bombs and mines existed.  Condition Zed was to be immediately deployed upon 

sounding of “general quarters” (Madsen 2003:69).  Condition X is the minimum safety 

condition, while Condition Z is the battle closure condition, and Condition Y is between the two 

(Wallin1968:125).  
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In a separate correspondence to the Chief, Bureau of Ships, Homann (1942a:2) states:  

“The ship, at the start of the attack, was in material condition X-ray with usual water-tight doors 

closed below the third deck, except air ports above the water-line were open.  Material Condition 

Zed had been partially set during the action before the ship was destroyed.” 

Turrets 3 and 4 were mostly secured in Condition Zed.  Because there were no survivors 

from turrets 1 and 2, there is reason to believe they were in the same condition.  Ensign 

Flannigan (1941:1) reported that the lower room of turret 3 was in Condition Zed.  Geiselman 

(1941:2), Arizona’s first acting captain after the attack, reported that the after magazines were 

voluntarily flooded during the attack.  

The boiler division and “B” part of the ship below the third deck was probably in 

Condition Zed shortly after the attack began.  From survivor accounts, “it is fairly certain that 

Condition Zed was not completely set on the third deck and probably most of the armored 

hatches were still open” (Homann 1942b:1-2).  Homann also states:  “an early bomb hit down 

the stack disrupted the fire main and bilge pumps and there was no water with which to fight the 

fires.”  He also noted that survivors’ statements indicated that the flooding was general after the 

magazine explosion, and the water filled Turret 4 at a very rapid rate, which would not occur had 

Condition Zed been fully secured; all watertight doors would have been sealed. 

 

FORWARD MAGAZINE EXPLOSION 

 

Arizona Acting Commander E.H. Geiselman reported that:  “Apparently one large, 

possibly 2,000-lb, armor-piercing bomb hit forecastle by No. 2 turret, which it is believed 

penetrated to the black powder magazines, setting off the smokeless powder magazines adjacent 

and causing the explosion which destroyed the ship forward”  (Geiselman 1941)  In a later 

assessment after extensive diving operation on the ship, including an attempt to investigate the 

path of entry of this bomb, the Commandant of the Pearl Harbor Navy Yard stated that the bomb 

was reported to have struck the ship near turret No. 2.  However, his speculation based on the 

greater structural damage forward of turret No1, particularly on the port side, was that the bomb 

may have penetrated on the port side (Paine 1943:2).  

In order to model the detonation of the forward magazines and its impact on the hull, an 

estimate of the munitions contained in the forward portion of the hull is necessary.  In the 1913 
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specifications for No. 39, later BB 39, USS Arizona, ammunition stowage requirements (Navy 

Department 1913:210-212) listed 1,300 14-in. amour piercing projectiles, at 1,410 lbs. apiece.  

The stowage required for the 14-in. powder charges, smokeless powder packed in 500-lb. 

powder tanks, was for 1,300 powder charges, or 250 lbs. of powder for each projectile.  There is 

no listing for 14-in. explosive charges to initiate the smokeless powder, although they would be 

required.  The 1913 specifications call for stowage for 5,000 40-lb. tanks of 5-in. powder for 

5,000 5-in. projectiles and for 3,400 lbs. of saluting powder, assumed to be black powder, packed 

in 17 200-lb. powder tanks.  In 1916, Arizona carried 22 5-in. guns, in 1941, 18 were carried 

(Lott 1978:51).   

In analyzing the forward magazine explosion, Lott (1978:43) quotes from an October 

1943 letter that Arizona had on board its full complement of smokeless powder in six magazines 

between frames 31 and 48 on the first platform (Figures 3.2 and 3.3).  There was also 1,075 lbs. 

of black powder in the black powder magazine, which was also stowed on the first platform, 

centerline between frames 37–39 (Figure 3.2) between the six smokeless powder magazines.  

Close to the black powder magazine is the small arms locker (Figure 3.2). 

The only document located that discusses the amount of powder in the forward 

magazines was by R. W. Paine, Commandant of the Pearl Harbor Navy Yard (Paine 1943:2-3)  

His account was developed from conversations with personnel attached to the ship at the time of 

the attack:  

 

(1) 308 – 14” shells in each turret, Nos. 1 and 2, on turret shell decks and in 

handling rooms, 1st platform. 

(2) 616 cans of smokeless powder for each turret, Nos. 1 and 2, distributed in six 

accommodating magazines, A-424-M, A-420-M, A-414-M, A-13-M, A-421-M 

and A-423-M 1st platform. 

(3) 25 – 25# cans and 150 – 3# charges of black powder between Nos. 1 and 2 

turrets in the black powder magazine A-415-Mm 1st platform. 

(4) 3,400 cans of 5” – 51 caliber smokeless powder in the 5” magazines forward. 

Powder about equally distributed between magazines on 1st and 2nd platforms, A-

432-M, A-431-M and A-324-M. 

(5) Approximately 300,000 rounds 50 caliber AA ammunition in forward 50  
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Figure 3.2. Arizona blueprint of forward magazines on first platform deck (USS Arizona Memorial Archives). 

 

 

 

 
 

Figure 3.3. Graphic of Arizona showing oil bunker and forward magazine locations in relation to hull damage 
mapped by SRC in the 1980s (Graphic by National Geographic Society).   
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caliber magazine, A-408-M. 

(6) Approximately 3,500 – 5” 51 caliber projectiles in ammunition passages 

amidships, B-504-m and B-505-M, 3rd deck. 

(7) Small arms ammunition, approximately 100,000 rounds of 30 caliber, 5,000 

rounds of 45 caliber, and 1,000 service primers, in A-417-m, 1st platform. 

(8) 75 – 14” Primers in each turret, Nos. 1 and 2, gun chamber 

(9) 50 electrical detonators in trunk A-511-2-T, third deck.  

 

In the Arizona ballistic data supplied by Lott (1978:51), 14-in. firing charges for 1941 

were 420 lbs., each requiring a 31.5-lb. explosive charge and primer.  Arizona was carrying 616 

shells and “616 cans of smokeless powder.”   The weight of 14-in. powder cans is not given by 

Paine, but they must have minimally been 420 lbs. for a total of 258,720 lbs. or 129.4 tons of 

smokeless powder in the forward magazines and 19,404 lbs. or 9.7 tons of explosive charge and 

an unknown number of primers for a total of 139.1 tons of 14-in. powder in the forward 

magazines.  Paine (1943) reported 1,075 lbs. of black powder in 25 25-lb. cans and 150 3-lb. 

cans.   

Originally, Arizona mounted 22 5-in./51 caliber guns, and specified 5,000 rounds.  In 

1941, these guns were reduced to 10 with 8 5-in./25 caliber dual purpose guns added (Lott 

1978:30), giving a total of 18 5-in. guns.  Each 5-in. round required about 25 lbs. of powder and 

a 2-lb. explosive charge (Lott 1978:51).  Paine does not give the weight of the 1941 5-in. powder 

cans, but in the 1913 Arizona stowage weight specifications (Navy Department 1913:211) it lists 

these cans as 40 lbs.  Lott (1978) indicates 5-in./51 caliber guns required a 24.5-lb. firing charge 

and a 2.04-lb. explosive charge per shot.  Assuming the 3,500 5-in. powder cans were 40 lbs., 

there would have been 140,000 lbs. of 5-in. powder, or 70 tons.  This is sufficient for 5,714 5-in. 

rounds, which would require 11,657 2.04-lb. explosive charges.  Paine (1943) does not mention 

these charges in his listing, but there would have been sufficient explosive charges to fire each 

round, which adds another 23,780 lbs. or 11.9 tons of powder for an estimated total of 81.9 tons 

of 5-in. explosives stored in the three forward 5-in. magazines. 

In addition to the large gun munitions, there were 100,000 50-caliber rounds and 6,000 

rounds of small arms ammunition located in the small arms magazine forward on the first 

platform.  A .50 caliber powder charge is about 230 grains or about one-half ounce of powder, 
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for a total powder weight for the .50 caliber ammunition of 3,125 lbs. or 1.6 tons of powder.  

Cumulatively, we estimate there was minimally about 222.6 tons of powder involved in the 

detonation of the forward magazines, primarily 14-in. and 5-in. smokeless powder and primary 

explosive. 

There is no question that the smokeless powder in the forward six magazines were 

sympathetically detonated, either by the armor piercing 700 kg bomb’s 70-lb. bursting charge or 

by a topside fire setting off the black powder magazine, which in turn detonated the smokeless 

powder.  The actual detonation chain will likely never be known, and there are several theories, 

some still actively debated, about what occurred (for example, see Stillwell 1991:274-278).  In 

any case, the detonation of the forward munitions, however devastating, was incomplete.  Five-

in./51 caliber powder cans were found on Ford Island 350–400 ft. off Arizona’s starboard side 

(Lott 1978:43); unburned 14-in powder grains were found on the quarterdeck of the USS 

Tennessee moored forward of Arizona, a distance of 400 ft. and 500 ft. from shore on Ford 

Island, a distance of 900 ft.; exploded 5-in. powder cans were found along the beach on Ford 

Island a distance of 350-400 ft., (Paine 1943:4); and 50-caliber rounds remain in the forward 

bow area. 

Paine (1943:3) described the forward magazine explosion: 

 

It appears the explosion in the forward magazines was vented through the sides of 

the ship from about Fr. 10 to about FR. 70 and upward through the decks forward 

of turret #1.  Due to the general extent of interior damage between Frs. 10 and 70, 

it is difficult to determine the exact magazines in which high order detonation 

took place, although the more severe damage is between about Frs. 10 and 33. 
 

USS ARIZONA BATTLE DAMAGE 

 

By the afternoon of December 7, USS Arizona was determined to be a total loss.  The 

Navy Yard’s Planning Section was informed that Arizona was:  “broken in half and burning. 

Completely submerged except for the two aft turrets and tripod mast.  No job orders issued” 

(Summary of Damage Reported to Planning Section, Dec. 7, 941), which indicated nothing could 

be done for the ship.  In a memorandum from USS Pennsylvania, the flagship, sent by Cmdr, 
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Homer N. Wallin, Battle Force Material Officer, at 1345 December 7, he states:  “The Arizona is 

a total wreck, she is resting on the bottom without much list, and is still burning forward.  The 

foremast has fallen forward about 45°” (Wallin 1941:1)(Figures 3.4 and 3.5).  Arizona’s hull was 

reported to have settled for days (Madsen 2003:81), releasing air bubbles from the interior. In 

Memorandum No. 7, December 9, 1941, from the United States Pacific Fleet Battle Force, USS 

California, Flagship, Arizona and West Virginia were declared “total wrecks” (p.3).   

By December 28, 1942, in a memo from Commander Base Force to Commander in 

Chief, Pacific Fleet (Commander Base Force to Commander in Chief, Pacific Fleet December28, 

1941:6-7), the assessment of Arizona was: 

 
 

 
 

Figure 3.4. Arizona burning, forward mast toppled, December 8, 1941 (USS Arizona Memorial Photo 
Archives). 
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Figure 3.5.  Arizona damage soon after fires were extinguished December 10, 1941 (USS Arizona Memorial 
Photo Archives). 

 

 

This ship is damaged by enemy action, internal explosions and fire to such and 

extent as to be valueless except as to the material in the after 40% of length not 

damaged by immersion in sea water, and as an expensive source of steel scrap. 

Subject to further diving surveys, it is recommended that work on this ship be 

limited to removing No. 3 and 4 turrets as practicable with local weight handling 

equipment and removing other useable material under other Bureaus and to 

cutting off, as opportunity affords, of the damaged structure above water. 
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COMPILATION OF ARIZONA BATTLE DAMAGE BY FRAME 

 

Frames 10-70: Most forward interior damage between these frames (Paine 1943:3). 

 

Frames 10-33: the more severe damage is between these frames (Paine 1943:3). 

 

Frame 30:  Investigations by salvage divers revealed that the hull bottom had a major 

crack about 120 ft. from the bow [frame 30].  Divers used water jets and pumps to tunnel beneath 

the hull to ascertain damage from bow back to frame 78.  There was no other damage observed 

(Raymer 1996:86-91). 

 

Frame 35:  Torpedo hit reported by eyewitnesses.  This will be discussed below with the 

“bomb down the stack” observation that was reported at the time.  

 

Bomb Down Stack:  Reported by eyewitnesses and in various reports, and discussed 

below in more detail below.  

 

Bomb that sympathetically detonated forward magazine:  Apparently, one large, possibly 

2,000-lb., armor-piercing bomb hit the forecastle near No. 2 turret, which it is believed 

penetrated to the black powder magazines, setting off the smokeless powder magazines adjacent 

and causing the explosion which destroyed this ship forward (Geiselman 1941:2; Homann 

1942a:2).  Although divers attempted to investigate the path of entry of this bomb through the 

ship, extensive damage made it impracticable.  “It appears probable, due to the greater structural 

damage forward of turret #1, especially on the port side, that the bomb may have penetrated on 

the port side of turret #1” (Paine 1943:2). 

 

Frame 66:  “One bomb hit, size of bomb not known, on boat deck at frame 66, port side, 

by No.4 antiaircraft gun ammunition hoist, extent of damage done by this bomb is not known” 

(Geiselman 1941:2; Homann 1942a:2). 

 

Frame 67: “One bomb approximately 1000-lb., hit on boat deck just forward of stack, at 
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frame 67.  Width of hole on boat deck is approximately four feet, depth of penetration is not 

known” (Homann 1942a;1; Geiselman 1941:).  This is also listed by McClung (McClung n.d.:1). 

 

Frame 70:  The decks have collapsed and slope downward from about frame 70 to about 

frame 34. Between frames 45 and 34, the upper deck is about 3 ft. the top of the armor on the 

starboard and at the top of the armor belt on the port side (Paine 1943:5). 

 

Frame 73: “One heavy bomb hit, estimated over 1,000-lb., port side of boat deck just 

forward of the incinerator, by No. 6 antiaircraft gun. The extent of damage done by this bomb is 

not known” (Geiselman 1941:2; Homann 1942a:2).  This is also listed by McClung (McClung 

n.d.:1). 

 

Frame 76:  Interior damage prevented divers from penetrating further than frame 76 on 

the main and second decks and not forward of bulkhead 78 below the third deck. However, on 

the third deck in ammunition passageways A-504-M and A-505-M access was possible as far 

forward as frame 66.  In these spaces the second deck sloped down forward and the third deck 

was split and blown upward.  No access could be gained to the firemen’s passage C-501 on the 

third deck (Paine 1943:5). 

 

Frame 78: “The whole ship forward of frame 78 (after fire room bulkhead) is badly 

damaged.” … “It is not possible for divers to operate inside of the vessel forward of frame 78 

due to the very extensive wreckage up to and including the main deck.” … “It is believed that all 

of the vessel aft of frame 78 is floatable, or could be made floatable.” … “Construction of a sheet 

pile cofferdam is not practicable on account of the porosity of the coral” … “ the after portion of 

the vessel could probably be floated satisfactorily”  (Furlong July 24, 1942:2). See also Paine 

October 7 1943 memo, which also discusses damage forward of frame 78.   

 

Frame 78-90:  A bomb hole was discovered on the second deck between frames 78 and 

90 on the port side.  A diver traced its path down two decks to where it was located in the walk-

in meat freezer (Raymer 1996:76).  This bomb hole is depicted in Figure 3.6. 
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Frame 85:  One 500-lb. bomb hit the port gallery deck.  The width of the hole in the deck 

is approximately 24-in. in diameter, with the depth of penetration unknown (Geiselman 1941:1; 

Homann 1942a:1).  This is also listed by McClung (n.d.:1). 

 

Frame 96:  One 500 or 1000-lb. bomb hit the port side of the quarterdeck in M.B. 

Stowage, with a 24-in. hole in the deck and penetration unknown (Geiselman 1941:1; Davison 

1941; Homann 1942a:1).  This is also listed by McClung (McClung n.d.:1). 

 

Frame 120:  Some bomb damage and fire, starboard side (Commandant, Navy Yard, PH 

to Chief of Bureau of Ships, March 15, 1942). 

 

Frame 123:  500-lb. bomb hit the face of turret No. 4 on the starboard side, glanced off 

and passed through the deck at frame 123, starboard side of the quarterdeck, between the 

captain’s hatch and No. 4 turret and exploded in the captain’s pantry, destroying both the 

captain’s and admiral’s pantry (Geiselman 1941:1; Fuqua 1941; Davison 1941; Miller 1941; 

Homann 1942:1).  McClung (n.d.:1) notes it went “Through the quarterdeck at frame #123 to 

starboard of No. 4 turret. This bomb exploded in the Captain’s pantry” (McClung n.d.:1). 

 

 
 

Figure 3.6.  Bomb hole, forward of the galley, port side, near frame 78 (NPS Photo by Patrick Smith). 
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Torpedo:  “From the report of the commanding officer of the U.S.S. Vestal, which was 

moored alongside of the Arizona to port, bow to stern, the USS Arizona apparently sustained a 

torpedo hit about frame 35, port side.  Damage caused by this torpedo hit cannot be determined, 

as the ship in this area has been completely destroyed.  The outboard fuel oil tanks were filled to 

ninety-five percent capacity in the area of the possible torpedo hit” (Homann 1942a:2).  

Indications are that this statement originated from the interview that Homann conducted with Lt. 

CMDR S.G. Fuqua in December 1941 (Fuqua 1941:2).   

During hull damage surveys, divers could find no evidence of torpedo damage above the 

mudline (McClung n.d.:1).  Paine (1943:3), after extensive investigation of Arizona’s hull noted 

that “no evidence of torpedo hits has been found, although the condition of the flat bottom 

forward inboard … is not known.  The bottom structure in the forward part of the ship is not 

accessible from inside and is embedded in the mud outside.”  The ship had not sunk to stable 

sediments at that time, so likely there was more hull exposed “above the mudline” when initially 

inspected than when the ship later reached stability.  In the 1980s, NPS divers and U.S. Navy 

Mobile Diving and Salvage Unit One divers conducted an extensive survey of the portside above 

and below the mudline with water jet probes to locate possible torpedo damage.  Probing along 

the hull in this area produced negative results.  To conclusively determine whether a torpedo hit 

in this area would require extensive excavation below the mudline.  

 

Bomb Down the Stack:  Some eyewitness report a bomb going down the stack.  Lt. A. J. 

Homann, who later became acting Arizona commander, personally interviewed and certified 

several Arizona survivors within a couple weeks of the attack.  William W. Parker, Arizona 

survivor, reported, 

 

One bomb hit in front of the forward turret.  We think it went down the magazine, 

for the whole forward part of the ship blew up and caught fire.  Myself, and one 

of the other men must have gotten blowed over the side of the galley deck. About 

that time, a bomb went down the stack (Parker 1941). 

 

Apparently, Acting Arizona Commander E. H. Geiselman (1942:2) made the first official 

recording of a bomb going down the stack in his December 17, 1941 damage report.  He reported 
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a heavy bomb, 1,000 or 2,000 lbs. had gone down the stack. 

Acting Arizona Commander Homann (1942a:2, 1942b:2) who relied on survivors’ 

interviews states in correspondence to the Chief, Naval Operations that “an early bomb hit down 

the stack and disrupted the fire main and bilge pumps.”  This is also listed by McClung in a 

report to the Salvage Engineer (McClung n.d.:1).  One of the survivors was Lt CMDR S.G. 

Fuqua, who reported a bomb had gone down the stack, and that it was not known “whether a 

torpedo hit the face plate of No. 4 turret indirectly” (Fuqua 1941:2).  Divers investigating the 

uptake armor grating in the main deck as far as the wreckage would permit, and the grating was 

believed to be intact (Paine 1943:5), indicating no bomb went down the stack.  Again, like the 

search for torpedo damage, no damage has been observed by NPS or Navy divers in the deck 

area around the stack.  Based on material evidence, a bomb did not go down the stack and the 

fire pumps were disabled by the magazine explosion (Figure 3.7).  

 

 

 
 

Figure 3.7.  Detail of archeological map of Arizona depicting the stack area, with bow to the left 
(Drawing by NPS-SRC). 
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RESULTS OF COMPREHENSIVE HULL DAMAGE SURVEY 

 

Lt. M. L. McClung (n.d.:2-4), serving as Assistant Salvage Engineer, provided an 

extensive damage report to the Salvage Engineer.  This report, based on diver hull surveys, 

provides a complete picture of Arizona’s condition soon after the attack:   

 

6. A survey of the port side of the ship indicates that aft of frame #70 the 

hull is intact. Forward of frame #70 the plating on the topside of the blister is 

pulled away from the ship practically all of the distance to frame #18.  The 

hull above the blister is damaged by explosion from frame #67 forward to a 

crack from the gunwale to the blister at frame #22.  This area above the blister 

is bulged and blown out so that divers cannot walk on the flat top of the 

blister.  From frame #22 forward the damages lessens until the bow and bow 

and stem are in fair condition forward of frame #12. 

7. The starboard side of the ship shows a condition very similar to the port 

side.  Aft of frame #76 the hull is reported by the divers as intact with no 

apparent damage.  Forward of frame #76 and reaching to frame #72 the rivets 

in the hull are loose. At frame #72 the blister is cracked from the top down to 

and below the mud line as far as divers could reach without extensive 

excavation.  The blister is pulled away from the hull. The hull is blown out 

and torn in a manner similar to that on the port side.  This damage reaches to 

frame #22, then diminishes leaving the bow intact [Figure 3.8 and Figure 3.9]. 

8. The top hamper of the vessel is burned and buckled to render it useless 

as anything except scrap.  

9. The upper deck forward of No. 2 turret is blown out. The deck has been 

folded outward and forward so that divers descend thirty feet before striking 

wreckage which is in such a condition as to prevent inspection.  

10. The main deck aft of the break to the upper deck at frame #88 is in 

good condition with exception of one large hole, 4’ by 6’ athwart-ship made 

by the bomb which glanced from the starboard side of No. 4 turret and ten 

small holes ranging from 5 to 12 inches in diameter within fifteen feet of the 
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Figure 3.8. Planimetric view of Arizona bow damage (Drawing by NPS-SRC). 

 

 

 

 

 

 
 

Figure 3.9. Arizona profile views port and starboard depicting current condition (Drawing by NPS-SRC). 
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large hole. Forward of frame #88 the main deck is buckled and twisted as are 

all bulkheads and partitions, as previously mentioned.  The 5 in. batteries on 

each side of the deck are burned so as to render the guns useless.  The ship’s 

divers have tried to explore this part of the ship but have been unable to do so 

on account of the twisted and broken condition. 

 11. The ship’s divers have removed valuables from the upper and lower 

Ward-room country.  This part of the ship is in good condition with exception 

of the area damaged by fire and by the bombs which struck near No.4 turret. 

Between frames #76 and #90 the rooms on the starboard side consisting of the 

Captain’s office, Engineer’s office and Disbursing office have been explored 

and the valuables removed.  The center of the ship in this area is a twisted 

mass of wreckage.  The area astern of frame #90 on the starboard side 

consisting of Junior Officer’s staterooms was damaged considerably by fire.  

The Warrant Officers staterooms on the port side were damaged also by fire.  

The Captain’s cabin, Captain’s pantry and wardroom and Officer’s stateroom 

were damaged considerably by the bomb.  

 12. On the splinter deck the only part explored is the lower wardroom and 

Officer’s quarters. This part of the ship is reported as in good condition. 

 13. A summary of the condition of the ship is as follows:  the top hamper 

with the exception of the main mast and boat cranes forward of frame #88, is 

burned and blown to a degree, which renders it useless, the upper, main and 

splinter decks forward of frame #88 are burned and twisted so that they are 

not safe for exploration by divers.  The forecastle is gone and from all divers’ 

reports the part of the ship below the forecastle is blown and twisted similar to 

that part which is visible.  The portion of the ship aft of frame #88 is in fair 

condition with exception of the portion damaged by bomb hits and fire.  

 The hull of the ship is apparently in good condition aft of the forward 

engine room bulkhead and the sides are reported as good aft of frame #76 on 

the starboard side and frame #67 on the port side. The condition of the interior 

of the ship aft of the points mentioned is not known.  The guns in No. 3 and 

No. 4 turrets have been removed. The condition of the guns in No.1 and No.2 
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turrets is not known as these are under water. 

14. The soundings taken before and after Dec. 7, 1941, indicate that mud 

has been deposited on both sides of the ship abeam of turrets No.1 and No. 2. 

A reasonable opinion of the cause of this deposit based on experience in 

submarine rock excavation is that this deposit came from under the ship or the 

water displaced by the explosion brought the mud when it returned. 

 

PEARL HARBOR SALVAGE 

 

SALVAGE ORGANIZATION AND OPERATIONS 

 

The U.S. Navy formed the Base Force Salvage Organization in the week following the 

December 7, 1941 attack.  Commander James M. Steele, commanding officer of Utah, was its 

first commanding officer.  Its goal was a simple one:  “to deliver ships and equipment to the 

Navy Yard for disposition.  This was a major undertaking; Pearl Harbor was a ship repair 

facility, not a salvage unit” (Madsen 2003:36). 

Navy salvage beginnings can be traced to 1939 with the hastily organized group at the 

San Diego Navy Salvage Base (Bartholomew 1990:53).  The first trained salvage personnel 

arrived in Pearl Harbor in early January 1941.  A group of six officers and 62 enlisted men who 

were members of the Navy's first formal salvage school arrived at Pearl Harbor.  The school had 

not been held and these personnel had not yet been trained; instead the class would receive on 

the job training at Pearl Harbor (Madsen 2003:115; Bartholomew 1990:83). 

Several conditions led to the rapid salvage and recovery of stricken vessels in Pearl 

Harbor.  The first is that the damage inflicted, although severe, was not as bad as it could have 

been. The attack had been directed toward capital ships.  Of the 86 ships in Pearl Harbor 

December 7, 1941, 10 were damaged and 9 sunk (Wallin 1946:1).  The Navy Yard and personnel 

were intact, and there was local industrial support available on Oahu.  In addition, there were two 

contractors, one of which was already involved with Navy operations:  Pacific Bridge Company 

in Hawaii working with underwater concrete, and Merritt-Chapman and Scott, which went under 

contract with the Navy December 11, 1941 to provide services, material and logistical support 

for salvage operations (Bartholomew 1990:57-59, 69).  In addition, divers were immediately 
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available at Pearl Harbor from the Navy Yard, Pacific Bridge Company and the two submarine 

rescue vessels Widgeon and Ortolan (Raymer 1996:29), the Destroyer Repair Units and the 

submarine base.  In all, about a hundred divers were available (Wallin 1946:30).  During the 

Pearl Harbor salvage operation, nearly 20,000 diving hours were conducted by Navy and 

contract divers with no Navy casualties and only one contractor casualty (Bartholomew 

1990:68).  Although Wallin's estimate of the diving hours is somewhat less; he reported 3,000 

dives and 9,000 diving hours, mostly on Oglala, West Virginia, Nevada, California and 

Oklahoma (Wallin 1946:30).  It is likely that the estimate of 20,000 hours is more accurate.  Lt. 

Commander H.E. “Pappy” Haynes, who served as dive officer during the salvage operations, 

reported 2,299 dives with a total dive time of 7,893 hours for Arizona work. 

 Initial salvage operations were directed to putting out the raging fires, followed by 

actions to keep vessels afloat and prevent capsizing.  Immediately following were evaluation 

dives to ascertain hull damage sustained during the attack.  The final task was to patch and 

refloat the vessels so they could be transported for more complete repair and restored to service.  

In the case of Arizona, there was never serious consideration of raising the severely damaged 

hull; salvage work was directed to recovery of useful materials, weapons and munitions.  During 

the remarkable salvage operation at Pearl Harbor, all but three of the damaged and sunk vessels 

were returned to wartime service. 

 

USS ARIZONA SALVAGE OPERATIONS 

 

Initial salvage diving on Arizona began December 8, 1941, while the ship was still 

burning.  The first dives were conducted by Arizona personnel, and their diving continued 

through April 1942.  These dives were made to recover government funds, confidential 

publications, official records, personal effects, and ordnance equipment (Haynes 1943: 3). 

One of the first salvage dives into USS Arizona’s interior took place January 12, 1942 by 

Cmdr. Edward Raymer, who had served aboard Vestal. (Raymer 1996:1-6).  The diver entered 

the trunk hatch near the stern and proceeded to the general workshop (machine shop) on the third 

deck to investigate a hole beneath the mudline on the port stern discovered during the earlier 

external hull survey.  Originally believed to have been made by a torpedo that had not exploded, 

Raymer discovered it was a bomb constructed from a large caliber artillery shell to which fins 
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had been welded.   

As mentioned, there was no plan to salvage Arizona and return it to the fleet.  “Salvage” 

in the case of Arizona meant stripping useable materials from the ship.  Weapons and 

ammunition were the top priority.  There was no salvage work on Arizona from December 30 to 

January 6, when ammunition removal began (Madsen 2003:113).  By January 25, 1942, 

considerable material had been removed from Arizona (Figures 3.10 and 3.11). 

Salvage work started on removal of the aft turrets (Progress of Salvage Work, January 25, 

1942).  A memorandum to file by the Commander Battle Force US Pacific Fleet, January 29, 

1942 reporting attack damage stated of Arizona, “the ship is considered to be a total wreck 

except for the material which can be salvaged and reassigned. A considerable amount of 

ordnance material has already been removed, and work is underway in removing the 12-in. [sic] 

guns from turrets three and four” (Commander Battle Force January 29, 1942).   

The right gun of turret 3 was lifted clear on February 10, 1942.  Both turret 3 and 4 were 

turned 90° to face Ford Island so work could be done (Madsen 2003:139).  At that time, the 

quaterdeck was submerged beneath 10 ft. of water, so a cofferdam was constructed.  All three 

 

 
 

Figure 3.10.  Diver emerging from after magazine through turret No. 3  
(USS Arizona Memorial Archive Photo). 
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Figure 3.11.  Diver on Arizona deck, 1943.  Note shallow water diving equipment made from gas mask  
(USS Arizona Memorial Archive Photo). 

 

 

 

guns were removed in a week.  Removal of the 14-in. shells was going on concurrently through 

February and into March.  The broadside guns had been removed and part of the boat deck was 

cut away for access to guns 5 and 6 (Madsen 2003:173).  The foremast was cut away and 

removed May 6, 1942, the main mast August 23.  The guns from turret 3 and 4 were transferred 

to the Army for use as shore batteries.  Guns of turret 2 were removed in September.  Boat 

cranes and kingposts were removed at this time and much of the wrecked superstructure was 

removed to Waipio Point (Madsen 2003:218).  The final work on Arizona was completed 

October 13, 1943.  The entry in the Salvage Diary for that date stated, “Continued removal of 

machinery and equipment incident to discontinuance of salvage operations” (Salvage Diary, 

Pearl Harbor ,October 12, 1943).  

A bomb hole was discovered on the main deck between frames 78 and 90, and a diver 
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traced its path for two decks.  The bomb was located in the walk-in meat freezer.  The bomb was 

recovered and it was identified as a U.S. 15-in. coastal artillery shell still containing the U.S. 

imprint on the shell’s base.  Apparently, the U.S. had sold the obsolete shell to the Japanese as 

scrap metal.  They had made a bomb out of the shell, and like the one located in the machine 

shop, had welded metal fins to it.  This shell was transported to the Bureau of Ordnance in 

Washington D.C. for examination (Raymer 1996:76). 

Arizona salvage plans were being revised in February 1942, and its salvage remained a 

low priority.  Consideration was being given to removal of the stricken hull.  “It is possible that 

the after part of the ship can be floated, and raised, but this no doubt involves cutting off of the 

forward by dynamite.  The study of the Arizona project will be undertaken when more urgent 

work is out of the way (Wallin, February 8, 1942:3). 

A month later, Commandant of the Navy Yard, William Furlong reported to the Chief, 

Bureau of Ships that:  

 

The Arizona is resting on a comparatively solid bottom in berth F-7 with the water 

level about ten feet above the quarter-deck.  The after half of the vessel is fairly 

intact except internally in way of some bomb damage and fire in the 

neighborhood of frame 120 on the starboard side [Furlong March 15 1942:1-3]. 

 

In this same report (Furlong March 15, 1942), torpedo damage is reported and alternative 

salvage plans are offered, including mention of a cofferdam:  

  

4. Based on damage reports and inspection of the hull below water, it appears that 

the vessel was struck by one torpedo on the port side at about frame 35 and by 

seven bombs in various locations. Due to a magazine explosion forward, the 

whole area forward of the smoke stack is badly wrecked and burned and the hull 

appears to be generally opened up below the present water line.  In view of the 

great extent of serious damage in the forward part of the ship, it appears 

impracticable to float the vessel, although floatability could possibly be obtained 

if a cellular sheet piling cofferdam were driven around the ship….Sufficient sheet 

piling and equipment for diving are here for this cofferdam.  An alternative would 
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be to cut up by acetylene burning the whole forward part of the vessel within the 

cofferdam and to float the after part of the vessel to shallow water for scraping.  

This amount of work would cost perhaps a half million dollars, [about $6.6 

million in 2008 dollars], but would provide a large amount of needed scrap 

material. 

 

5.  As an alternative to proceeding as above to remove the Arizona from her berth, 

it is suggested that she be left in her present location but that all visible wreckage 

be removed and cut up for scrap. All the structure of the ship above the boat deck 

can be removed and reduced to scrap at a moderate cost without adverse effect to 

other work….Considerable material and ordnance have already been salvaged.  

This plan includes the construction of a battleship berth alongside and outboard of 

the Arizona.  It would be possible in time to fit turret No. 3 as a fixed battery in 

connection with her remaining at her present berth.  

 

BODY RECOVERY  

 

Mounting pressure from Congress for recovery of the remains of Arizona casualties led to 

body recovery operations a few months after the attack. Many bodies had been reported afloat in 

the machine shop area.  Salvage divers recovered approximately 45 bodies from the third deck 

workshop via the trunk.  The advanced state of decomposition precluded intact recovery and 

identification; the recovery operation was soon halted (Raymer 1996:84, Madsen 2003:173).  

Additional bodies and skeletal remains were encountered during the salvage operations.  These 

were removed to the hospital, and apparently no further identifications were made.  William 

H.Furlong, Commandant of the Pearl Harbor Navy Yard, in a memo to the Vice Chief of Naval 

Operations (Furlong july 24 1942:4) estimated there were 900 bodies remaining aboard Arizona.  

It is likely that USS Shaw was the first ship to honor Arizona with a standing honor 

guard.  As it passed the sunken hull, it mounted an honor guard at the rail as it passed Arizona on 

its way to Mare Island February 8, 1942 (Raymer 1996:85, Madsen 2003: 129-130).  Capital 

ships have carried the tradition of honoring Arizona as they pass by to this day. 
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USS ARIZONA SALVAGE ACTIVITIES:  SALVAGE DIARY, PEARL HARBOR, 1943 

 

This compilation of selections from the Pearl Harbor Salvage Diary (Salvage Diary, 

Pearl Harbor 1943) was chosen because each offers something relevant about Arizona’s salvage.  

As discussed above, very soon after the attack, the decision was clear:  there would be no attempt 

to refloat Arizona; only usable materials and scrap, mostly superstructure, were to be 

recovered—anything useful was to be reconditioned and returned to fleet operations.  Salvage 

operations focused on turrets 2, 3 and 4, the 5-in. broadside battery and anti-aircraft guns and 

ammunition.   

During salvage, the ship was explored and some observations regarding the condition of 

the ship’s interior were made and recorded in this diary.  There are several items recorded in the 

Salvage Diary that are important to the USS Arizona Preservation Project.  Some examples are:  

the overhanging sides above the armor belt were burned off; most of the superstructure removal 

took place forward of Frame 78; during gun removal, turrets 2, 3 and 4 were sealed and 

dewatered; however, magazine hatches between turret 3 and 4 were removed to allow removal of 

munitions—these spaces should be accessible for corrosion analysis measurements with the 

VideoRay ROV.  Any salvage diver observations regarding interior spaces are retained below.   

Many of these observations were considered in planning which section of the hull would be 

modeled and were utilized during interior explorations with the ROV. 

 

March 27, 1942:  Removed deck above broadside gun No.6. 

March 30, 1942: Continuing underwater cutting on broadside stand 7. 

May 1, 1942 : Continuing to cut away wreckage and foremast. Making detailed 

study of damage to determine whether vessel can be floated. Some evidence of 

ship's back being broken amidships, this is being checked.   

May 18, 1942: Continued with underwater survey and the removal of topside 

wreckage. It was found that bulkhead 78 is structurally sound from the hold to the 

third decks. 

June 3, 1942: Continued with underwater survey and removal of topside 

wreckage. Preliminary inspection of port engine room showed no extensive 

damage. Preparations are being made for the location of an inspection tunnel 
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under the forward portion of the ship. 

June 4, 1942: Continued with underwater survey and removal of topside 

wreckage. Approximately 100 tons of wreckage have been removed from the 

starboard side forward. 

June 5, 1942: Continued with underwater survey and removal of topside 

wreckage. A small derrick sooty is being rigged to handle mud siphon for 

inspection tunnel under forward hull. 

June 8, 1942: Continued with underwater survey and removal of topside 

wreckage. Inspection to date has revealed that center engine room has little or no 

damage. Continue: preparations for the removal of ammunition from Turret III. 

July 3, 1942: Continued with the removal of topside wreckage.  Continued with 

the removal of 14" powder tanks and also work on 5" A.A. guns. The deck in D-

410-M seemed to be buckling as the tanks were removed and 4 x 4" shoring is 

being put in as necessary. 

July 5, 1941: Continued with removal of topside wreckage. Work 

is also proceeding on the tunneling under the forward part of the ship. Completed 

shoring up in D-410-M (deck has L buckled nine inches due to pressure from 

below). Removal of ammunition and work on 5" A.A. guns was also continued. 

July 9, 1942: Continued with the removal of topside wreckage. Removal of 

ammunition and work on 5" A.A.guns was continued. Eighty 14" powder tanks 

were removed from D-410-M. 

July 11, 1942: Continued removing ammunition from D409-M and sent 78 - 14" 

powder tanks to West Loch. Continued with removal of topside wreckage and on 

5" A.A guns. 

July 19, 1942: Removal of topside structure and wreckage continued. Handling 

room of Turret III flooded yesterday afternoon and divers were sent down to 

investigate. Inspection showed that outboard bulkhead seams of D-405-M opened 

up. The after-magazine door showed signs of inward pressure. 

July 25, 1942: Divers cutting holding down bolts and wreckage to clear 5" guns. 

Also excavating to continue survey of Arizona bottom below blister, port side. 

Survey on starboard side completed, found extensive wrinkling of hull plating at 

 67



USS Arizona  Chapter 3 
 

turn and just under turn-of-bilge between frames 17 and 19. Continued removal of 

14" projectiles from D-407. Sent 40 -14" projectiles to ammunition depot. 

July 28, 1942: Continued caulking around water shed of Turret I. Stopped pumps 

and flooded to close passage way doors. 

August 24, 1942: Yard machinist continued working on pump in Turret IV. The 

pump should be back in commission some time today. Divers continued 

cutting on starboard 5"/25 gun. Tripod mainmast removed. Ship's bell will be 

turned over to Public Works for possible use as a PIS alarm. 

August 29, 1942: Completed removing 14" powder tanks from D-413-M and D-

412-M to shell deck of Turret IV. Removed one body from Turret IV and turned 

over to medical authorities. 

August 30, 1942: Shored up deck in #4 handling room. Making preparations to 

cut through bulkhead into B-416-M to remove small arms ammunition. 

September 4, 1942: Diver completed cutting bulkhead into D-416-M. Diver could 

not enter magazine due to ammunition boxes. 

September 5, 1942: Divers closed armored hatch to D-414. Started pumping 

magazine area. 

September 10, 1942: Continued removing small arms ammunition from 

D-416- M. Diver continued cutting decks above port broadside gun. 

September 12, 1942: Diver closed vents in D-422 1/2-A and D-420-M.  Drilled 

two vent holes in bulkhead between D-416-M and D-422 1/2-M. 

September 13, 1942: Diver removed hatch in D-415 to allow room for deep well 

pump. Flooded magazine area so diver can burn bulkhead between D-416-M, and 

D-422 1/2-M. 

September 16, 1942: Completed removing ammunition from D-422 1/2 - M 

All ammunition has been removed from the let platform. Diver started checking 

vents and doors on 2nd platform. 

September 20, 1942: Diver finished cutting drain hole in bulkhead. Diver replaced 

hatch on first platform which was removed to burn a hole in it for the pump pipe. 

Set up motor unit and frame for deep well pump. 

September 22, 1942: Divers continued closing vents on second platform. 
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Checking all material, machines, etc. in preparation for removing 5" ammunition 

from second platform. 

September 23, 1942: Divers continued closing vents and other openings on 2nd 

platform. Awaiting crane service to install deep well pump. 

September 23, 1942: Divers continued checking vents, doors and other closures. 

The door leading to D-304-M is sprung and difficult to make tight. 

September 30, 1942: Diver burned one drain hole between D-302-M and D-302 

1/2-M. Started pumping second platform area [Figure 3.12]. Recovered remains 

of 8 bodies and sent to area hospital. 

October 3, 1942: Continued pumping operations to keep 2nd platform magazines 

unwatered. Continued removal of debris from 2nd platform magazines. Started 

making preparations to rig lights. Diver continued working on 5" gun on port side. 

October 9, 1942: Continued pumping operations. Started removing catapult 

charges from D-306 1/2 M. Removed shell carrier and piston from Turret III so as 

to enlarge mess hole. 

October 12, 1942: Continued pumping operations. Continued removing catapult 

ammunition. Closed 5"1/25 cal. ammunition hoist on 3rd deck to stop leakage 

from trunk into magazines, and opened door to D-404-M and D-409-M. 

October 14, 1942: Started removing 5"/25 cal. ammunition from D-304-M. 

Continued pumping operations. 

October 15, 1942: Continued pumping operations. Continued removing 5"/25 cal. 

ammunition from D-304 1/2-M. 

October 19 1942: Continued pumping operations. Made preparations to start 

removing 5"/25 cal. Ammunition from D-306-M. Repairing gear, checking 

lighter, etc. Yard diver continued underwater cutting to remove structural 

wreckage forward. Recovered one paravane. 

November 2, 1942: Continued pumping turret #3. Continued removal of holding 

down clips, and machinery in turret #3. Yard divers continued cutting scrap steel 

in forward section of ship. Divers made inspection and took measurements for 

cofferdam to be installed on main deck at stern for unwatering airplane crane 

machinery compartments and removal of kingpost and machinery. 
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Figure 3.12.  Pump and platform used to unwater second platform magazines, Space D-307, 

Frame 119-120, October 5, 1942 (USS Arizona Memorial Photo Archive). 
 

November 6, 1942: Continued pumping operations. Completed removal of 

holding down clips, Turret 3. Continued removal of motors and disassembling 

train, worm and pinion. Began preparations for removal of top plates, turret #2 

and top plates of conning tower. Continued diving operations on aviation crane. 

Continued cutting of interior wreckage forward for recovery of scrap steel. 

November 25, 1942: (1) Continue pumping operations in turrets #3 and #4. 

Continued removing chains in powder hoists in turret #4. (2) Divers continued 

cutting underwater scrap forward of frame #78. No scrap metal removed due to 

lack of crane service. (3) Continued removal of bolts holding roof plates of turret 

#2. Completed cutting connections of roof plate of conning tower to interior 

bulkheads. (4) Continued work toward removal of stern airplane crane machinery. 

December 4, 1942: (1) Continued pumping operations in turrets #3 and #4, 

Removed small battery compartment exhaust blower and motor from shell deck, 

(2) Divers made exploratory dive, attempting to reach handling roan underneath 

#1 turret. Unable to reach handling room because of wrecked 

hatch. (3) Continued removal of bolts in roof of conning tower. Continued 
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removing wiring and structure inside of conning tower (4) Divers cutting 

underwater scrap steel forward of frame #78. None removed. 

December 5, 1942: (1) Continued pumping operations in turrets #3 and #4. 

(2) Divers continued attempts to reach handling room, turret #2 to determine 

possibility of unwatering turret. They were unable to find a passage 

to handling room because of wreckage. Continued cutting bulkheads in turret #2. 

Continued preparing section of key roof plate for removal. (3) Continued 

preparing roof of conning tower for removal. Drilling out brass holding down 

bolts. (4) Continued cutting underwater scrap metal for of frame #78. None 

removed from ship. 

December 8, 1942: (1) Continued pumping operations in turrets #3 and #4. (2) 

Divers continued cutting wing in bulkheads of gun chamber, turret 2. This is 

moose [loose?] to gain free access to angle joining top and side armor plates. 

Continued jacking up section of key plate of roof to prepare for lifting. (3) Divers 

continued cutting underwater scrap metal forward of frame 08. None removed 

from ship. (4) On stern airplane crane, removed socket bearings of kingpost and 

pinion Lear on 2nd deck. Started cutting access hole to 3rd deck. 

December 9, 1942: (1) Continued pumping operations in Turrets 3 and 4.     (2) 

Divers continued cutting gun chamber bulkheads in Turret 2. Continued removal 

of section of center plate in roof of Turret 2. (3) Divers continued 

cutting underwater scrap forward of frame n. No scrap steel removed from ship 

today. (4) Cutting access hole in 2nd deck aft into D-512-E for removal from 3rd 

deck of hoisting machinery of stern airplane crane. 

January 16, 1943: (1) Continued diving operations on conning tower 

central tube. Discontinued removal of keys in armor. Expect to lift top half of tube 

without disassembly (Weight about 100 tons.). Resumed closing bottom of tube 

for unwatering. Removing hatch at bottom of tube to repair gasket. (2) Continued 

cutting underwater scrap metal forward of frame #78. Removed some lockers and 

wreckage. (3) Divers searched for anchors and towing bridle. Towing bridle was 

previously removed from ship. Anchors were apparently blown clear of ship, and 

have not been located. (Note: Letter from BuShips has requested information as to 
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possibility of recovering the above items.) 

January 21, 1943: (1) Divers removed port shell dumping cradle in gun chamber, 

turret #2. Began cutting of bulkheads abreast powder hoists to gain access for 

installation of powder hoist covers. (2) Installed stage in conning tower armored 

central tube. Removed one 1 1/2"x9" bolt of about 50 bolts joining upper and 

middle section of tube. (3) Divers continued cutting underwater scrap metal 

forward of frame #78. None removed from ship. (4) Removed about 900 ft. of 2" 

wire rope towing cable from reel in D-504. Completed removing 8" manila 

mooring line from reel at frame #104, starboard side, 2nd deck. Removed 

considerable amount of 2 1/2" manila line from another reel at same location. 

February 1, 1943: (1) Continued operations in turret #2. Divers closing off 

powder hoists and fitting covers on blower openings in gun pit. (2) Diver 

continued cutting away structure outside conning tower central tube. (3) Divers 

continued cutting underwater scrap metal forward of frame #76. None removed 

from ship. 

February 13, 1943:  (1) Divers continued installing and making tight covers on 

gunports, turret #2. Diver worked under wreckage of drip pan overhang of turret 

and ventilators so that openings in overhang may be closed. (2) Continued 

pumping in turrets #3 and #4. Expect 150 ton crane to be available to remove 

turret #3 side armor plates today, after which temporary ventilation will be 

reinstalled and work started toward removal of at turret. (3) Divers continued 

cutting underwater scrap metal forward of frame #78. Removed 6 tons of scrap 

steel and about 30 feet of anchor chain. 

 February 22, 1943: (1) Continued pumping turret #2. Diver completed plugging 

ventilation holes in overhang. Manufactured discharge rope and flange for electric 

deep well pump. Lashed deep well pump together with 10" and 6" gasoline pumps 

in turret #2. Lowered water level, sufficiently to determine location of several 

leaks. Divers changed shoring of power hoist covers. (2) Continued pumping 

turrets #3 and #4. Shipfitters continued clearing area for laying out cut at point 

where turret #3 is to be separated for lifting, and fitting metal parts to wooden 

lifting guides. Shipwrights making up and fitting lifting guides. (3) Divers jetted 
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mud from damaged area forward of frame 22, cut underwater wreckage at 

bulkhead #20, completed freeing center wildcat for removal; continued cutting for 

removal of conning tower foundation, and continued cutting for removal of 

wreckage projecting beyond side of ship at frame 66.  

February 23, 1943: (1) Divers worked in turret #2 stopping leaks disclosed by 

lowering of water level by pumping. (2) Shipwrights continued making up and 

fitting wooden guides to be installed in shell deck, turret #3. Shipfitters and 

drillers continued fitting metal face pieces on guides. Installed muffler on Diesel 

engine of pump in turret #4, and continued pumping turrets #3 and #4. (3 ) Divers 

recovered center wildcat and about six tons of scrap steel at fr.20. 

Continued underwater cutting as follows: damaged bulkheads on 3rd deck at fr. 

24, port; bounding angle around conning tower tube; upper deck projecting over 

side at fr. 66, port; and superstructure deck aft of conning tower, port side. 

February 26, 1943: (1) Diver continued closing leaks in turret #2 gun chamber. 

Water level lowered to approximately 4 ft. from top of side armor. (2) Continued 

pumping turrets #3 and #4. Installed a 44' electric deep well pump in turret #3. 

Continued making up lifting guides for turret #3. Clearing space at circle deck for 

placing shoring to support lower section of turret. Clearing area for laying out cut 

at point where turret is to be separated. (3) Divers recovered 69 gas masks, Mark 

III, from compartment d-311. Masks delivered to berth 5 for disposal. (4) Divers 

jetted mud and silt from wreckage at frame 20, port; cut on wreckage in same 

area; attempted to lift large section of steel outside ship at fr. 30, starboard ; and 

cut on wreckage aft of conning tower. About 6 tons of scrap metal removed from 

ship. 

February 28, 1943: (1) Lifted armor plate #T-2 from roof of turret #2. (2) 

Continued pumping turrets #3 and #4 and installing lifting guides on shell deck. 

Made preparations for placing shoring on circle deck. Laid out line for cut to 

separate upper and lower sections of turret. (3) Divers resurveyed section of 

forecastle deck over starboard bow; cutting on bulkheads on forecastle deck fr.21 

port; cutting structure around conning tower central tube and boat deck aft of #2 

turret to clear way for later removal of guns from #2 turret; and completed cutting 
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overhanging wreckage at fr.66, port. No scrap removed from ship. 

March 1, 1943: (1) Divers continued closing leaks in turret #2. Water level has 

now been lowered to about 6 ft. by pumping. (2) Continued pumping turrets #3 

and #4. Continued installing, lifting guides and placing shoring to support lower 

section, turret #3. Expect to finish shoring today and begin cutting tomorrow. (3) 

Divers cutting wreckage in side of ship about fr.20 and aft of conning tower tube 

about fr.55. Removed and placed on forward quay a piece of scrap weighing 

about 15 tons with deck winch attached. This piece was over side of ship at fr.30, 

starboard. 

March 2, 1943: (1) Continued pumping in turret #2. Began cutting overhead 

beams holding forward roof plate. (2) Continued pumping turrets #3 and #4. 

Continued installation of guides and shoring in turret #3. (3) Diver cutting 

damaged bulkhead at fr. 20 and cutting wreckage aft of conning tower to fr.62 to 

clear area for removal of 14" guns in turret #2. (4) Lifted out section of boat deck 

at fr. 56 port, and placed on forward quay to be cut up for handling with truck. 

March 4, 1943: (1) After rearranging 10" hose, resumed pumping turret #2 and 

burning over head beams holding forward roof plate. (2) Removed upper section 

of conning tower central tube. (Wt. about 100 tons). (3)Continued installation of 

guides and shoring in turrets #3 and clearing out handling room for placing shores 

to circle deck. Continued pumping turrets #3 and #4. (4) Diver Cutting wreckage 

forward of #1 turret and aft of conning tower to frame #62. Cutting up scrap on 

forward quay for removal. None removed. 

March 10, 1943: (1) Divers opened W.T.D.s from engine room C-1 into shaft 

alley D-3 and from shaft alley D-1 into shaft alley D-5; opened W.T.D. from 

engine room C-1 into shaft alley D-1. Divers also checked, from outside of the 

ship, all the airports on the starboard side of the second deck from frame 70 to 

frame 106 and found them securely closed. (2) Divers continued installation of 

airlock extension at frame 105 starboard side for #7 access hole. (3) Cut an access 

hole into blister C-87-2-V between frame 86 and frame 87 on the starboard side. 

(4) Continued skimming fuel oil from the various access holes, and also pumped 

fuel oil from C- 87-F into the Intrepid. (5) Continued pumping gaseous water 
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from #3 and #6 access holes.  

March 13, 1943: (1) Diver worked under overhang of turret #2 closing openings 

which had been overlooked. This work is difficult due to very limited working 

space. (2) Continued pumping turrets #3 and #4. Began placing shores in handling 

room and timber guides on shell deck, turret #4. (3) Divers cutting wreckage at 

fr.20, 3rd deck; aft of turret #2 to fr. 62; and at r.70, starboard; and removing 

pyrotechnics in C.T. foundation. No scrap removed from ship. 

March 14, 1943: (1) Closed openings in overhang of turret #2. Reduced water 

level to a point below shell table. It is now possible to remove after roof plate, 

rangefinder, and then remove shell table to clear way for removing 14" guns. 

Began cutting loose after roof plate. (2) Continued installation of shores and 

guides in turret #4 and clearing area for cut to separate turret for lifting. 

Continued pumping turrets #3 and #4. (3) Recovered and delivered to Yard one 

ship's anchor with about 12 feet of chain. Placed about 30 feet of anchor chain on 

forward quay. Recovered about tons of scrap steel and placed on forward quay to 

be cut up for truck handling. None removed from ship. (4) Diver cutting wreckage 

projecting from side at fr. 24, port. 

March 17, 1943: (1) Pumping turret #2. Cutting loose after roof plate. (2) 

Continued bracing shores in handling room, turret #4. Laid out horizontal cut for 

separation of turret. Lifting pads for upper sections of turrets #3 and #4 have been 

delivered to the ship. The 3" diameter bolt holes in the pads are smaller than holes 

in bulkheads to which pads are to be bolted. Holes must be reamed and bolts 

fitted. Continued pumping turrets #3 and #4. (3) Divers cutting underwater 

wreckage at fr. 20 and aft of turret #2. Removed about 8 tons of scrap from ship. 

Diver caulking around range finder ports, turret #2. (4) Divers continued 

recovering gas masks from D-311. Delivered 6 dry cans and 3 leaky cans of 

masks to berth #5. 

March 24, 1943: (1) Pumping turret #2 gun chamber. Continued jacking up roof 

plates and removing shell loading table. (2) Continued pumping turrets #3 and #4. 

Continued fitting lifting pads and reaming out holes in lifting pads and in 

bulkheads, and taking measurements for machining of fitted bolts. (3) Continued 
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alteration of supports for deep well pump abreast turret #4. Employed diver for 

this work. (4) Divers commenced removal of port deck winch abreast turret #3. 

Divers cutting underwater wreckage at fr. 20, main and 2nd decks, and aft of 

turret #2. No scrap metal removed from ship. 

April 2, 1943: (1) Completed repairs to 10" pump on turret #2 and began 

installing an additional 10" gasoline pump. (2) Continued pumping turrets #3 and 

#4. Received and installed five bolts for lifting pads in turrets #4. (3) Divers 

continued removal of port deck winch, aft. Divers cutting underwater 

wreckage at fr.17-20, main and 2nd deck and aft of turret#2 to fr.60. No scrap 

removed from ship. (4) Connecting airlines for divers to compressors on boat 

deck and installing new volume tank. 

April 4, 1943: (1) Completed installation of additional ten-inch pump (gasoline) 

on turret # 2. Pumped water down to within about four feet of deck in gun pit. 

Continued removing project loading cable. (2) Continued pumping turrets #3 and 

#4. Began removing part of temporary mooring abreast turret #3, port side. (3) 

Removed from ship and delivered to berth #5, one electric motor from port deck 

winch, aft at six shell transportation slings (14"). Removed one ton scrap. (4) 

Installed additional electrical power cable from ship overhead line on Ford Island. 

(Three conductor, #? cable.) (5): Divers cutting underwater wreckage at frame 24-

26, second deck and on wreckage aft of turret #4 to frame #66. 

April 7, 1943: (1) Pumping turret #2. Began removing shell rammers and rammer 

motors. (2) Continued pumping operations in turrets #3 and #4 (3) Continued 

removal of outboard and of temporary quay abreast of #3 turret. (4) Divers 

burning section of skin of ship projecting outward above armor at fr.19-21. 

Cutting wreckage amidship at frame16. Cutting wreckage aft at turret #2 and 

assisting in removal of quay. (5) Divers removing starboard deck winch aft. No 

scrap metal removed from ship. 

April 10, 1943: (1) Pumping turret #2. Began removal of electric winch motor and 

rammer motors. (2) Continued pumping turrets #3 and #4. Began installation of 

lifting pads for second lift in turret #3. (3) Continued removal of dolphins abreast 

turret #3. (4) Divers cutting underwater wreckage projecting from side at fr.19-21, 
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port, and wreckage aft of turret #2. Recovered approximately 30 feet of anchor 

chain from mud outside port bow. Diver assisted in removal of dolphins. No scrap 

removed from ship. 

April 17, 1943: (1) Allowed turret #2 to remain flooded. Waiting for concrete in 

port shell hoist tube to set before pumping down. (2) Completed holding down 

clips for cofferdam around turret #4 barbette. Began moving equipment from 

turret #3 in preparation for lifting. (3) Divers jetting mud from wreckage inside 

bow at frame 20. Cutting wreckage aft or turret #2 down to and including upper 

deck. No scrap removed from ship. 

April 19, 1943: (1) Pumped turret #2. Began removing part of port shell hoist tube 

and made preparations for pouring concrete in starboard tube. (2) Removed 

discharge pipe from deep well pump in turret #3. Cast loose pump for removal. 

The 150 ton crane was not available due to wind above 12 knots. (3) Delivered 

port deck winch, aft to berth #5 for overhaul. (4) Divers cutting on wreckage aft 

of turret #2 to upper deck level. No scrap removed from ship. 

April 27, 1943: (1) Pumping turret #2. Removed welded covers from side armor 

bolt heads on starboard side. (2) Continued pumping in turrets #3 and #4. 

Removed deep well pump from turret #4. (3) Diver continued closing area around 

fr. #2. inside bow for cutting. Cutting wreckage aft of turret #2 to frame 64 down 

to and including upper deck. Divers examined sides of ship forward and found 

projections at frames 10-20, port and starboard. 

April 28, 1943: Pumping turret #2 gun chamber. Removed one electric auxiliary 

projectile hoist motor and one gear box. (2) Diver cutting water shed of turret #4 

to free side armor for lifting. (3) Divers cleaning mud and silt from area around 

frames 20 in side bow. Lifted several sections of wreckage from area at frame 60, 

upper deck, including one bake oven, unfit for salvage. (4) Removed 

approximately 6 1/2 tons of scrap from ship.  

April 29, 1943: (1) Pumping turret #2. Cleaned out scrap metal from gun 

chamber. Making preparations for removing counter-balance mechanisms from 

guns. (2) Diver continued to cut on watershed of turret #4 to prepare side armor 

for lifting. Diver continued jetting mud from wreckage inside bow at frame 20. 

 77



USS Arizona  Chapter 3 
 

Continued removing scrap from area aft of conning tower. (4) Making up air 

ejector pipe for tunneling under bow to determine condition of bottom in area of 

magazine explosion. (5) No scrap metal removed from ship. 

May 1, 1943: (1) Pumping turret #2. Removed counter balance mechanism from 

loft gun. Began to remove same center gun. (2) Diver completed cutting 

watershed of turret #4. Began clearing barbette of obstructions to allow fitting of 

cofferdam. Diver continued clearing mud from wreckage around frame 20 inside 

bow. Cutting section of skin of ship projecting outboard at frame 21, above armor 

belt. Cutting wreckage aft of turret #2 on upper deck, frame 64. No scrap removed 

from ship. (3) Continued fabrication of air ejector pipe. 

May 3, 1943: (1) Pumping turret #2. Completed removal of counterbalance 

mechanisms from guns. (2) Removed the 4 side armor plates from turret #4. (3) 

Diver cutting obstructions from barbette of turret #4 to allow fitting of cofferdam, 

after removal of upper section of turret. (4) Cutting underwater wreckage aft of #2 

turret to fr. 64. on upper deck. No scrap removed from ship. 

May 12, 1943: (1) Pumping turrets #3 and #4. Continued cutting to free 

foundation of turret #4 for removal. (2) Set 10" gasoline pump in turret #2. 

Shifted 10" gas pump from wood quay to top of turret #2. (3) Began removal 

of temporary wood quay, F-7-S. (4) Divers cutting wreckage aft of turret #2 on 

main deck in order to lift upper deck to frame 64. No scrap removed from ship. 

May 19, 1943: (1) Continued removal of forward wood quay and pilings. (2) 

Continued installation of lifting pads in turret #4 on foundation. (3) Made 

arrangements for installing an additional electric deep well pump in turret #3 in 

order to further unwater turrets #3 and #4 for removal of eight magazine doors 

and door frames. (4) Divers continued cutting aft of turret #2 on conning tower 

structure; continued cutting holes in turret #4 to drain water from area to be cut 

for lifting foundation. 

May 21, 1943: (1) Continued pumping turrets #3 and #4. Completed installation 

of lifting pads on foundation, turret#4. Continued cutting to free foundation for 

lifting. (2) Removed four doors from hinges, two at each end of passageways 

between turrets #3 and #4 on 1st platform. (3) Divers continued cutting on 
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conning tower foundation structure. 

May 28, 1943: (1) Removed recoil and counter-recoil nuts from 14" guns in turret 

#2. (2) Flooded turrets #3 and #4. Opened four magazine doors in #4 handling 

room and blanked off air vent in D-413-M. Will unwater turret today in order to 

remove required magazine doors and frames. (1) Pumped to lower water level in 

turret #2 sufficiently for removal of the differential cylinders from counter-recoil 

mechanisms on guns. (2) Diver began cutting out magazine door frames in 

passageways between #3 and #4 turrets, end doors to D-413-M and D-412-M. (3) 

Divers continued cutting on conning tower foundation. 

May 29, 1943: (1) Diver inspected elevating drive shafts in turret #2 to locate 

point of separation from Waterbury speed gear. (2) Removed 2 magazine doors 

with powder scuttles and door frames. Delivered to berth #5. (3) Diver removing 

doors from hinges in #4 handling room, and continued cutting on conning tower 

foundation. (4) Continued repairs to deep well pump motor in turret #3.  

June 3, 1943: (1) Diver continued cutting to free rear plate, turret #2, for removal. 

(2) Diver continued cutting out magazine door frames, turret #4. Removed from 

ship three doors with powder passing scuttles and one door frame. (3) Continued 

cutting scrap steel to be removed from ship. 

July 14, 1943: (l ) Diver clearing area aft of turret #2 to frame 60 for removal of 

guns. (2) Diver cleared debris from hatch in bottom of conning tower central tube. 

The area below this hatch was found to be so chocked with wreckage that the 

diver could not gain access. Diver began diving on main deck, abreast turret #2, 

port side, in an attempt to gain access to 1st and 2nd platforms to inspect 

structural damage. 

July 17, 1943: (1) Diver could not find access to 1st platform in forward part of 

ship due to wreckage. Attempts were made at frames 34, 28 and at frame 6. (2) 

Continued clearing wreckage aft at turret #2. Completed removal of castings from 

front plate of turret #2. 

July 17, 1943: (1) Discontinued inspection of structural damage in forward part of 

ship for BuShips. Diver reported that it is impossible to reach  magazine area on 

first and second platforms without extensive underwater cutting. (2) Divers 
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continued clearing area aft of turret #2 and recovered one stamp-canceling 

machine from Post Office. Used two divers. 

July 26, 1943: (1) Removed two magazine doors and frames from turret #3, 

making a total of eight doors and eight door frames removed from magazines 

turrets #3 and #4. (2) Suspended operations on this ship pending the availability 

of the 150-ton floating crane. 

August 1, 1943: (1) Resumed operations, since 150 ton crane is expected to be 

available on 1 August. (2) Began measuring depth of water to top of blister from 

frame 70 forward. Measurements are taken at 15 foot intervals and will be made 

on both sides of ship. This is being done to check previous measurements in 

damage survey. 

August 2, 1943: (1) Attempted to lift foundation of turret #4 from underwater, but 

foundation could not be moved. Plan to reinstall pumps and underwater 

turrets #3 and #4 to investigate and free foundation for lifting.(2) Completed 

soundings to top of blister from frame 75 forward. 

August 4, 1943: (1) Divers removed cover from hatch at frames 119-120 

in 1st platform and replaced after pump access hole in hatch had been closed by a 

welded patch. (2) Manufactured cover plate for ventilation opening in 

compartment D-142-M, in preparation for unwatering turrets #3 and #4. (3) Diver 

took soundings port and starboard, to the top of the blower at the 

after end. 

August 5, 1943: (1) Removed center 14" gun of turret #2. MkVIII, Mod.4, 

#18L3 from under water. Gun was placed on deck of 150 ton crane, breech 

opened by hand and entire gun sprayed with Tectyl. The powder chamber 

contained a fourteen inch drill projectile and a brass backing out slug. Used two 

divers to assist riggers. 

August 6, 1943: (1) Diver completed securing W. T. hatch leading to D-307 

and installed cover plates on exhaust vents in D-412-M and D-413-M. This work 

is in preparation for unwatering turret #4. 

August 21, 1943: (1) Began installation of pumps on turret #2. (2) Divers 

commenced taking soundings of various points on ship for use in completing 
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sketch plan of condition of the ship. 

August 24, 1943: (1) Continued the installation of pumps for the unwatering of 

the gun chamber of #2 turret. Utilized the services of divers as necessary. (2) 

Took elevation of various parts of the ship in order to determine its present 

position. 

October 11, 1943: (1) Diver continued cutting off deck lug holding down bolts in 

turret #2, starboard. This work is difficult and slow due to poor access and the 

recessing of bolt heads in the casting. (2) In view of the time that would be 

required and since all material from the gun chamber and pit has been recovered, 

except the deck lug castings, which it is understood are not desired by BuOrd 

[Bureau of Ordnance], salvage work on turret #2 and thus on the ship as a whole 

will be stopped as of this date. 

  

CONCLUSIONS 

 

 This chapter is incomplete; there is much more work needed regarding two critical 

elements:  modeling overall ship damage including the forward magazine explosion and its 

impact on the hull and archival research to locate divers’ and engineers’ sketches and drawings 

and additional documentation to incorporate into the FEM.  Originally, we intended to contract 

this research out during the course of research between 1999–2007.  Unfortunately, funding was 

inadequate to complete these tasks. 

 However, review of salvage records as reported in this chapter was sufficient to aid in 

selection of which portion of the hull to focus corrosion analysis upon and determine which 

portion of the ship should be modeled for the FEM.  Understanding the extent of interior damage 

at the aft end of the explosion and where the fires occurred informed the selection of frames 70–

90 for the FEM.  Early damage reports indicated that the ship was intact aft of the area of frame 

70 to 76, although fires had reached to frame 88 (Homann 1941a:1), and the main deck in that 

area was reported “buckled and twisted as are all bulkheads and partitions” (McClung n.d.) and 

sloping toward the bow (Paine 1943).  These reports contradict somewhat Arizona’s first Acting 

Commander Geiselman's early report of December 17, 1941 where he states that the attack had 

“…completely destroyed the ship forward of frame 88 by fire and explosion of forward 
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magazines.  The fires being finally extinguished after burning two days.  It is believed that 

considerable equipment aft of frame 90 can eventually be salvaged.”  There were no structural 

alterations other than removal of superstructure, turrets and crane aft of frame 66.  Frame 70 

would be the furthest forward the hull would remain sound, although the upper deck area 

forward of the galley has begun to sag (see Chapter 9).  

The reason for selecting frames 70–90 for the focus of research is that corrosion 

measurements based on hull structure that had been subjected to blast and fire (the forward 

portion of Frames 70–90) would provide a conservative estimate for the aft hull portions and for 

the hull areas containing oil bunkers that were not subjected to either flames nor blast.  

Indications are that mild steel subjected to heat from fire and explosion may corrode underwater 

at a faster rate than mild steel that has not been heat damaged (see Chapter 5).  Corrosion 

measurements for the forward portion of the modeled hull, if based upon heat-damaged steels in 

the frame 70–90 area, would most likely be higher than on areas aft of frame 90.  Consequently, 

using corrosion rates based on damaged mild steel for the FEM would be conservative, that is, 

the model would incorporate the fastest corrosion rates likely to be encountered anywhere on the 

aft portion of the hull or within the interior.  Prediction of structural change and eventual 

collapse would be conservative in that the projection would indicate the closest date for expected 

structural change. 
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CHAPTER 4 
 
 
 
 
 
 
 
 
 
Dynamics of the Physical Environment on USS Arizona 
 
Curt D. Storlazzi, M. Katherine Presto, Michael E. Field, and Matthew A. Russell 
 
 
 
 

INTRODUCTION 
 

A variety of factors have been identified that directly influence metal corrosion on 

shipwrecks, including water composition (dissolved oxygen, pH, salinity and conductivity), 

temperature and extent of water movement (North and MacLeod 1987:68). 

Oxygen reduction is typically the main cathodic reaction occurring in steel exposed to 

seawater, so dissolved oxygen availability at the cathodic site controls the corrosion rate, with 

higher dissolved oxygen content resulting in higher corrosion.  Water at the ocean’s surface is 

generally oxygen-saturated, so overall dissolved oxygen content depends on the amount of 

mixing that occurs with surface water—increased water movement and mixing results in 

elevated dissolved oxygen levels.  In addition, temperature and dissolved oxygen are inversely 

proportional, so lower temperature results in increased dissolved oxygen.  The pH level is 

indicative of overall corrosion activity.  In normal seawater, pH ranges from 7.5 to 8.2, but levels 

below 6.5 are found under concretion covering actively corroding metal.  Lower pH levels (more 

acidic) typically characterize active or increased corrosion levels.  Salinity is closely related to 

the corrosion rate of steel in water, so increased salinity usually results in higher corrosion rates.  

This is evident when comparing metal preservation in freshwater compared to seawater 
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environments—freshwater lakes typically exhibit better preservation of iron and steel.  There are 

several ways that higher salinity affects corrosion, including increasing conductivity (which 

facilitates movement of ion between anodic and cathodic areas), increasing dissolved oxygen and 

supplying ions that can catalyze corrosion reactions, among others (North and MacLeod 

1987:74).  Higher conductivity can increase corrosion by increasing the movement of ions during 

the corrosion process. 

In general, corrosion increases as temperature increases.  Under controlled laboratory 

conditions, corrosion rate doubles for every 10°C rise in temperature.  This relationship is 

complicated, however, by the effect of temperature on both dissolved oxygen and biological 

growth.  Warmer water supports increased marine growth, which contributes to concretion 

formation on steel in seawater and that, in turn, generally reduces corrosion rates.  In addition, as 

discussed above, lower temperature results in higher dissolved oxygen content, which 

consequently means increased corrosion (North and MacLeod 1987:74). 

Water movement from waves and currents on a site affects corrosion in several ways, but 

generally high-energy environmental conditions results in higher corrosion rates.  Active water 

movement can contribute to mechanical erosion of metal surfaces and can also impede 

development of protective concretion layers by removing accumulating ions before they can 

precipitate and begin the concretion formation process.  Waves and currents also contribute to 

water mixing and aeration that result in increased dissolved oxygen levels (North and MacLeod 

1987:74). 

Factors that affect corrosion on metal shipwrecks are complicated and interrelated.  

Reducing one key factor can increase another, and the results are often unpredictable.  It is clear, 

however, that in order to understand the corrosion history of an object, even a complex object 

like a World War II battleship, and to begin to define the nature and rate of deterioration 

affecting the object, an understanding of the various environmental factors at play is necessary.  

An important aspect of the USS Arizona Preservation Project was long-term monitoring of 

oceanographic and environmental parameters on the site.  This was accomplished with in situ  

multiparameter instruments placed on the hull and on the seabed to the side of the vessel.  

Interior conditions were also measured using ROV-deployed instruments. 
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EXTERIOR DATA COLLECTION 

 

LONG-TERM IN SITU MONITORING, 2002-2005 

 

U.S. Geological Survey (USGS) and National Park Service (NPS) personnel collected 

long-term, high-resolution physical and chemical oceanographic measurements at the USS 

Arizona Memorial (USAR) in 2002–2005 to better understand the nature of the environment 

surrounding the mostly submerged historic ship, and to determine long-term, seasonal variability 

in key parameters that affect corrosion.  Scientists used a number of bottom-mounted, multi-

parameter instruments deployed in water depths less than 10 m to collect survey and time series 

environmental data.   

Researchers calibrated and deployed a SonTek Triton Acoustic Doppler Velocimeter 

(ADV) wave-height and current meter and a YSI 6600 Multiparameter Sonde on Arizona in 

November 2002.  These instruments have internal memory and batteries and can be left in situ 

for up to 60 days, recording data multiple times an hour.  The instruments were retrieved and 

downloaded, then recalibrated and deployed every 60 days by USAR staff.  The data were sent to 

the SRC in Santa Fe, New Mexico, and the USGS in Santa Cruz, California, for compilation and 

analysis.  The instruments collected baseline data including wave height and direction and 

current velocity and direction around the vessel, and basic environmental parameters including 

pH, temperature, salinity, dissolved oxygen, oxygen reduction potential and conductivity.  The 

purpose of these measurements was to collect hydrographic data to better constrain the nature of 

the physical and chemical environment on the submerged vessel hull and near the Memorial to 

determine temporal and spatial variability.  Two RD Instruments 600 kHz Acoustic Doppler 

Current profilers (ADCP) were later deployed for a one-month period in April–May 2005 in the 

same locations as the SonTek instrument for additional data collection. 

 

Project Objectives 

 

The objective of the instrument deployments was to understand how waves, currents and 

water column properties such as water temperature, salinity, pH, turbidity, oxygen reduction 

potential and dissolved oxygen in the vicinity of the Memorial vary spatially and temporally. 
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These data were collected to support the NPS-SRC research to understand and characterize the 

nature and rate of natural processes affecting deterioration of USS Arizona.  To meet these 

objectives, flow and water column properties close to Arizona’s hull were investigated. The first 

two instrument packages were deployed over a period spanning 14 months to investigate 

variability over daily-to-seasonal time scales.  The objective of the third instrument deployments 

was to understand how currents and temperature in the vicinity of the Memorial vary over two 

spring-neap tidal cycles.  These data supplemented the single-point measurements made between 

2002–2004. 
 

Study Area 

 

The instrument deployments were conducted adjacent to and on USS Arizona’s hull 

(Figure 4.1).  The SonTek ADV was deployed in 10 m of water roughly 25 m southeast of 

Arizona’s port beam below the Number 1 turret from November 2002, through November 2003. 

In November 2003, the ADV was re-deployed in 10 m of water roughly 25 m northwest of USS 

Arizona’s starboard beam below the Number 1 turret and logged data at that location until 

January 2004.  The seafloor at both of these sites is an organic-rich, very well sorted fine 

silt/mud.  The YSI Sonde was deployed amidships on Arizona’s main deck just forward of the 

Number 3 barbette and just aft of the Memorial from January 2003 through January 2004.  

Vertical profiles of the water column using the Sonde were made off the USS Arizona 

Memorial’s dock in February 2003. Two ADCPs were deployed concurrently at the two ADV 

sites to either side of the Number 1 turret from April 2005 through May 2005.  All diving, 

mobilization and demobilization were based from the USS Arizona dock. 

 

Operations 

 

This section provides information about personnel, equipment and vessels used during 

equipment deployments. See Tables 4.1 and 4.2 for personnel involved in this experiment and 

Tables 4.3 and 4.4 for complete deployment information for the instruments. 
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Figure 4.1. Map showing the spatial distribution of instrument packages in the study area relative to the USS 

Arizona’s hull and Ford Island. 
 

 
Person Affiliation Responsibilities 

Curt Storlazzi   USGS Chief scientist, scuba diver 

Matthew Russell NPS-SRC Co-chief scientist, led scuba diving operations 

Marshall Owens NPS-USAR USAR Memorial curator, led refurbishment operations 

Michael Field USGS Scientist, scuba diver 

Larry Murphy NPS-SRC Scientist, scuba diver 

Michael Freeman NPS-USAR Scuba diver 

Table 4.1.  Personnel involved in long-term instrument deployments, 2002–2004. 

 
Person Affiliation Responsibilities 

Curt Storlazzi   USGS Chief scientist, scuba diver 

Matthew Russell NPS-SRC Co-chief scientist, led scuba diving operations 

Kathy Presto USGS Scientist, lead instrument technician 

Jennifer Burbank NPS-USAR USAR Memorial ranger, diver, led recovery operations 

Joshua Logan USGS Scientist, scuba diver, GIS Technician 

Thomas Reiss USGS Scientist, dive safety officer 

Table 4.2.  Personnel involved in instrument deployment, 2005. 
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Instrument Depth (m) Date Deployed Date Recovered Latitude (dd) Longitude (dd) 
SonTek Triton 10 11/21/2002 1/30/2003 21.36415 -157.95054 

SonTek Triton 10 1/30/2003 3/7/2003 21.36415 -157.95054 

YSI 6600 Sonde 3 1/30/2003 3/7/2003 21.36494 -157.94986 

SonTek Triton 10 3/21/2003 5/7/2003 21.36415 -157.95054 

YSI 6600 Sonde 3 3/21/2003 5/7/2003 21.36494 -157.94986 

SonTek Triton 10 5/15/2003 7/2/2003 21.36415 -157.95054 

SonTek Triton 10 7/8/2003 8/29/2003 21.36415 -157.95054 

SonTek Triton 10 8/29/2003 10/10/2003 21.36415 -157.95054 

YSI 6600 Sonde 3 8/29/2003 10/10/2003 21.36494 -157.94986 

SonTek Triton 10 10/23/2003 11/5/2003 21.36415 -157.95054 

YSI 6600 Sonde 3 10/24/2003 11/20/2003 21.36494 -157.94986 

SonTek Triton 10 11/20/2003 1/13/2004 21.36415 -157.95054 

YSI 6600 Sonde 3 11/20/2003 1/22/2004 21.36494 -157.94986 

Table 4.3.  Instrument package deployment log, 11/2002–1/2004. 

 
Instrument Depth (m) Date Deployed Date Recovered Latitude (dd) Longitude (dd) 
Starboard 9 4/2/2005 5/1/2005 21.364684 -157.950756 

Port 10 4/2/2005 5/1/2005 21.364206 -157.95055 

Table 4.4.  ADCP deployment log, 4/2005–5/2005 
 
 

Equipment and Data Review 

 

Three primary instruments acquired data during the deployments. The first instrument 

was a SonTek Triton wave/tide gauge (Figure 4.2a). The primary sensor on this package is an 

upward-looking 10 MHz Acoustic Doppler Velocimeter (ADV), which collects three-

dimensional single-point measurements of current velocity and acoustic backscatter data. A 

pressure sensor on the Triton provided tide data and spectral wave information. The Triton 

employed two different sampling schemes: First, it sampled the mean currents by averaging the 

current speeds over a 1-min window every 10 min. Second, it sampled the surface wind waves 

by collecting current and water depth data over an 8.5-min window every 2 hours.  

The second primary instrument employed was an YSI 6600 Multi-parameter Sonde 

(Figure 4.2b).  The YSI Sonde collected single-point measurements on water temperature and 

salinity, pH, dissolved oxygen and oxygen-reduction potential when deployed on the hull 3 m 

below the surface; the YSI was also used in profiling mode, collecting vertical profiles of water 

temperature and salinity, pH, dissolved oxygen and oxygen-reduction potential.  When used in 

profiling mode, the YSI was lowered from the surface to the seafloor in the early morning and  
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Figure 4.2. Photographs of instrument packages and their mounts.  a) The Sontek Triton ADV and sea bed 

mount.  This mount was designed to be able to simultaneously deploy the YSI 6600 Sonde in the empty 
bracket on the right side of the photograph; note the pen for scale.  b) The YSI 6600 Sonde and hull mount; 

note the pen for scale. c) RD Instruments ADCP and its sea bed mount.  The ADCP transducers and the 
pressure and temperature sensors are under the yellow protective cap (~20 cm diameter for scale). 
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the late afternoon for three consecutive days. During these profiles all the sensors on the YSI 

sampled at once per second. 

The third primary instrument used to acquire data during the deployments were two RD 

Instruments 600 kHz Acoustic Doppler Current profilers (ADCP) (Figure 4.2c).  These collected 

three-dimensional vertical profile measurements of current speed and direction in 0.5 m bins 

(sampling volumes) every 0.5 m from 1.0 m above the seafloor up to the water surface and 

single-point measurements of water temperature 0.5 m above the seafloor; a pressure sensor on 

the ADCP measured water level data.  The ADCP sampled mean currents, water level and water 

temperature by averaging over a 1-min window every 4 min. 

The first two instrument packages were typically deployed for approximately one- to two 

month periods, as limited by the power consumption and sensor sampling rates, while the third 

was deployed for only a one-month period (see Tables 4.3 and 4.4). The instrument specifics and 

sampling schemes are listed in Appendix A for the SonTek Triton ADV, Appendix B for the YSI 

6600 Sonde, and Appendix C for the RD Instruments ADCP (Storlazzi, et al. 2004; Storlazzi, et 

al. 2005).  Daily data on meteorologic forcing over the study period were recorded at the 

Honolulu International Airport roughly 5 km southeast of the study site.  These digital data were 

downloaded and compiled from the National Climate Data Center (2005). 

 

Deployment/Recovery Operations 

 

Prior to installation of the SonTek ADV in 2002, diving scientists established a secure 

guideline from Arizona’s hull out to the location where it would be deployed.  The ADV and its 

semi-permanent mount were initially deployed by lowering it just below the water’s surface 

where scuba divers attached a lift bag and detached the lifting line.  The divers followed a 

marker line to the sea floor to move the instrument package into place.  The divers secured the 

instrument package with cables attached to sand anchors embedded in the seafloor (Figure 4.3).  

The same procedure was followed for the later ADCP deployment in 2005.  The YSI Sonde was 

placed in its semi-permanent mount by researchers who swam it out from the USAR dock for 

deployment in 2002.  Periodic recovery and redeployment operations for the ADV and Sonde 

between 2002–2004 involved researchers removing the instruments from their mounts,  

 

 94



USS Arizona   Chapter 4 
 

 
Figure 4.3.  The SonTek ADV in place on the harbor bottom adjacent to USS Arizona  

(NPS Photo by Brett Seymour). 
 
 

swimming them back to the dock for download and battery replacement; they were then 

redeployed (Figure 4.4).  The vertical profiles collected with the YSI Sonde were done from the 

USAR dock. These entailed lowering the YSI Sonde to just below the surface for a minute to 

allow all of the sensors to equilibrate, then slowly lowering the YSI Sonde from the surface, 

down to the sea floor, then bringing it slowly back up to the surface. 

 

Data Acquisition and Quality 

 

SonTek Triton ADV data were acquired on 362 days during the 14-month period 

between November 2002 and January 2004, for more than 85% data coverage over the entire 

experiment period.  Instrument refurbishment and battery failure accounted for the 64 days 

during these 14 months when no data were recorded.  The ADV produced almost 77,750 

observations from each sensor.  Data quality was generally very high.  Scientists archived the 

raw Triton data, and copies of the data were post-processed to remove spurious data whenever 

the beam correlation dropped below 70%.  The post-processed data were saved and copies were  
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Figure 4.4.  USS Arizona Memorial diver retrieving YSI Sonde (NPS Photo by Brett Seymour). 

 

de-sampled to hourly intervals to better visualize longer-term variability; these desampled copies 

of the data were also saved and archived (Storlazzi, et al. 2004). 

The YSI Sonde produced data on 59% of days deployed (215 out of 362 days), which 

resulted in just over 23,000 observations from each sensor. Data quality was generally good, 

exceptions were from improperly calibrated sensors or when fouled by biologic growth. The 

post-processed data were saved and copies were de-sampled to hourly intervals to better 

visualize longer-term variability; these de-sampled copies of the data were also saved and 

archived.  Six vertical profiles were collected using the YSI 6600 Sonde, with 100% data 

recovery from the temperature, conductivity, and dissolved oxygen sensors. Due to sensor 

malfunction, no pH or oxygen-reduction potential data were recorded during any of the six 

profiles (Storlazzi, et al. 2004).  

The RD Instruments ADCPs acquired current speed, current direction and near-bed water 

temperature data for 30 days between April 2 and May 1, 2005, yielding 100% coverage over the 

entire experiment period.  Each ADCP made more than 10,400 observations of current speed, 

current velocity and acoustic backscatter from each of the 28 bins (>290,000 total samples per 

instrument) over the study period.  Data quality was very high.  The ADCP data near the surface 
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displayed slightly lower correlation due to bubble interference with the transducers.  This loss of 

data from the bins closest to the surface is common to most upward-looking ADCPs and was 

expected.  The raw ADCP data were archived and copies of the data were post-processed to 

remove all “ghost” data from above the surface. All data collected when the beam correlation 

dropped below 70% were discarded for visualization and analysis. Post-processed data were 

saved and copies were desampled to hourly intervals to identify longer-term variability; these 

desampled copies of the data were also saved and archived (Storlazzi, et al. 2005). 

 

Results 

 

This section reviews data collected by all systems during deployments and addresses 

significance of the findings to characterizing local oceanographic conditions in the study area. 

 

Meteorologic Forcing 

 

The Hawaiian Islands, situated at roughly 21º North, are in the Trade wind belt. 

Consequently, the study area is dominated by very low wind variability during the summer 

periods when the Trade winds blow consistently; insolation (solar heating) and thus air 

temperatures are high and precipitation is low. During the winters, when extratropical lows and 

frontal systems propagate through the Hawaiian Islands causing precipitation, weaker and more 

variable winds, decreased insolation and, thus, lower air temperatures occur. Based on 

oceanographic measurements made at USAR, decreased air temperatures and precipitation 

typically reduce water temperature and salinity in Pearl Harbor. The Trade winds, which 

generally cause the highest sustained wind speeds (excluding tropical cyclones) during the 

spring, summer and fall, are topographically steered around the Koolau Range to the east of 

Pearl Harbor, often approaching the south shore of Oahu from the south or southeast and 

resulting in strong winds to the north or northwest over USAR. During the winter months, 

passage of fronts and extratropical lows to the north of the Hawaiian Islands results in strong 

northerly winds being funneled south between the Waianae Range to the west of Pearl Harbor 

and the Koolau range to the East, resulting in strong winds to the south over USAR. These winds 

can drive surface currents and cause mixing of the water column at USAR. 
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Waves 

 

Waves in Pearl Harbor during the study were generally extremely small, with significant 

wave heights (Hsig) on the order of cm’s, with a range of 0.01 m to 0.08 m and a mean Hsig ± 

one standard deviation of 0.03 ± 0.01 m. Dominant wave periods (Td) are in a very narrow range 

between 19.85 and 20.38 sec, with a mean Td ± one standard deviation of 20.19 ± 0.08 sec; these 

low height, long period waves all were observed to come out of the southern quadrant (160º-

200º). This narrow band range and corresponding low wave heights suggest that the pressure 

sensor along the 10-m isobath is at or near its resolution limits relative to the incident wave 

frequency.  Because the depth of penetration of wave-induced pressure fluctuations and orbital 

motions decreases exponentially with depth and is dependant on wave height and period, it 

appears that the SonTek ADV’s pressure sensor is only able to resolve longer period motions at 

these small wave heights. Thus, the shorter period wind waves typically observed in the 

afternoon when the Trade winds are blowing 10-20 m/sec are too small in height and too short in 

period for the pressure sensor to resolve from its depth of 10 m. The 20-sec period waves that are 

resolvable by the pressure sensor are likely long period ground swell (North Pacific winter swell 

or South Pacific summer swell) that has enough energy to propagate up the entrance channel of 

Pearl Harbor and into the East Loch past USAR. 

In addition to these natural small, long-period swells, the pressure sensor record was 

often overwhelmed by high-amplitude, short-period (2-8 sec) modulations. These modulations 

appear to be due to large vessels passing over or by the Sontek instrument package, for they are 

anomalously large and have southeasterly (90º-150º) or northwesterly (270º-330º) directions, 

likely the result of incident waves and waves reflected off Arizona’s hull, respectively. 

 

Tides 

 

Pearl Harbor tides are of the mixed, semi-diurnal type with two uneven high tides and 

two uneven low tides per day; thus the tides change just over every 6 hours. The mean daily tidal 

range during the study was roughly 0.6 m, while the minimum and maximum daily tidal ranges 

are 0.4 m and 0.9 m, respectively (Figure 4.5).  The lunar tidal cycle drives the magnitude of the 

tidal currents, with the highest tidal current speeds occurring during the spring tides (new and  
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Figure 4.5.  Typical tidal data from USS Arizona. 

 

full moons) and the weakest during the neap tides (quarter moons).  While tides control the 

majority of the variability in current speed and direction, insolation-driven trade wind 

intensification also appears to slightly influence daily variability.  When the trade winds blow at 

high speed in the early to late afternoon, the net flow at the 10-m site appears to take on a more 

northwesterly component.  This shift might be due to an upwelling-type of phenomena, oceanic 

water being drawn into the harbor to replace the surface water flushed offshore by the trade 

winds. We do not have information at this time that indicates which process or combination of 

processes is responsible for the observed intensification of northeasterly flow during the 

afternoon. 

 

Currents 

 

Most daily variability in current speed and direction at the study site is due to the semi-

diurnal (12.4 hour) and diurnal (24.8 hour) tides.  As the tide rises (floods), currents in Pearl 

Harbor flow to the north; conversely, as the tide falls (ebbs), the currents flow to the south. Mean 

current speeds ± one standard deviation approximately 1 m below the water surface are 0.028 ± 

0.019 m/s off the starboard (northwestern) side of the hull and 0.023 ± 0.013 m/s off the port 

(southeastern) side of the hull.  Close to the bottom, mean current speeds ± one standard 

deviation 1 m above the seafloor are 0.010 ± 0.007 m/s off the starboard (northwestern) side of 

the hull and 0.027 ± 0.015 m/s off the port (southeastern) side of the hull.  Of note are the 

slightly different orientations in both instantaneous and net flow to the port and starboard sides 

of the USS Arizona’s hull.  Off the starboard side, the flow is predominantly oriented north-
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northeast or south-southwest, roughly parallel Ford Island’s shoreline in the vicinity of the USS 

Arizona.  Off the port side, however, the flow is predominantly oriented east-northeast or west-

southwest, roughly parallel to the main trend of the East Loch of Pearl Harbor.  These 

differences in orientation imply steering, not only by the bathymetry, but also by the USS 

Arizona’s hull (Figure 4.6). 

Net flow at the surface along both sides of the USS Arizona’s hull was to the southeast at 

roughly 0.02 m/s.  Assuming near-surface flow remained constant through this section of Pearl 

Harbor, the mean current speed of 0.02 m/s would result in a total replacement of water along the 

185-m length of the hull in just over 2.6 hours.  Net flow 1 m below the surface and 1 m above 

the seafloor along both sides of the USS Arizona’s hull were to the northwest at approximately 

0.02 m/s and 0.01 m/s, respectively.  Assuming near-bed flow remained constant through this 

section of Pearl Harbor, these mean current speeds would result in a total replacement of water 

along the 185-m length of the hull in just over 2.6 hours and 5.2 hours, respectively. However, 

because oscillatory tidal flows enhance these mean flow speeds, the actual replenishment time 

would typically be shorter. 

The differences in current speed, both vertically and from one side of the hull to the 

other, result in velocity shear, which, in turn, likely increases turbulence and mixing.  The values 

of vertical shear varied from 0.025 ± 0.015 1/s off the starboard (northwestern) side of the hull 

and 0.038 ± 0.023 1/s off the port (southeastern) side of the hull.  The shear was generally 

highest during the falling tides.  The vertical velocity shear, by moving seawater of a given 

density, would impart a vertical variation in current-induced force on the hull.  Seeing that 

seawater in Pearl Harbor has a density around 1023 kg/m3 (temperature~25 °C and a salinity~33 

Practical Salinity Units, PSU, or parts per thousand), the mean current-induced force on the 

starboard (northwestern) side of the hull is 0.175 ± 0.131 N/m2 and 0.291 ± 0.259 N/m2 on the 

port (southeastern) side of the hull (Figure 4.7). 

 

Water Column Properties 

 

The water column properties collected include variations in acoustic backscatter (dB), 

temperature (ºC), salinity (PSU), pH, oxygen-reduction potential (mV), and dissolved oxygen 

(%). Their ranges, variability and potential causes for their variability are discussed here. 
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Figure 4.6. The orientation of mean flow and its variability in the water column adjacent to the 

Arizona. TOP: Flow at the surface. BOTTOM: Flow in the water column. The red ellipses denote the 
magnitude of major and minor axes of variability in flow; the blue vectors denote the magnitude and 

direction of mean flow. Note that surface flow is stronger and oriented to the southwest while flow 
within the water column is weaker and is oriented to the northeast. Off the starboard side, the flow is 

predominantly oriented north-northeast or south-southwest, roughly parallel Ford Island’s 
shoreline; off the port side, however, the flow is predominantly oriented east northeast or west-

southwest, roughly parallel to the main trend of the East Loch of Pearl Harbor. 
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Figure 4.7.  Vertical profiles of the current-induced force on the USS Arizona’s hull. 

Dashed lines are ± 1 standard deviation.  Note that the force generally is at a maximum 
6 m above the seafloor (4 m below the surface). 

 

 

Acoustic Backscatter 

 

Over the period of study, the acoustic backscatter, which is a function of the particulate 

matter in the water column, 0.6 m above the seabed at the site along the 10-m isobath ranged 

between 145.48 dB and 281.52 dB, with a mean backscatter ± one standard deviation of 179.86 ± 

20.64 dB. In general, highest acoustic backscatter measurements occurred during winter months 
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and the lowest during the summer months. This peak in acoustic backscatter suggests that 

wintertime phenomena causes increased particulate matter concentrations in the area around USS 

Arizona. Potential reasons for this increase in backscatter include: precipitation and runoff in 

other regions of Pearl Harbor that would introduce fine-grained particulate matter into the harbor 

that is advected into the area around Arizona, or nutrients introduced into Pearl Harbor from 

runoff might cause algal blooms that increase acoustic backscatter.   

Acoustic backscatter was generally higher when the flow was to the south, likely caused 

by fine particulate matter being drawn down from the shallow regions of the northern half of the 

harbor. Acoustic backscatter also appeared to slightly increase during the early to mid-afternoon 

and decrease through the night (Figure 4.8); this suggests that either: (a) daily insolation-induced 

Trade wind intensification during the day creates larger Trade wind-driven waves that suspend 

more fine-grained sediment that is then advected by the sensor, or (b) more vessel traffic and 

prop wash during the day in the harbor tends to suspend more of the fine-grained bed sediment, 

which settles during the evening and night when vessel traffic subsides. We do not have 

information at this time that indicates which process or combination of processes is responsible 

for the observed intensification of acoustic backscatter during either the wintertime or in the 

afternoons and evenings. 

 

 

 
Figure 4.8.  Typical acoustic backscatter data from USS Arizona. 
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Temperature 

 

Over the period of study, water temperatures at the site along the 10-m isobath ranged 

between 23.14 °C and 27.52 °C, with a mean temperature ± one standard deviation of 26.03 ± 

1.17 °C.  The water temperature atop USS Arizona’s hull along the 3-m isobath ranged between 

29.42 °C and 19.15 °C, with a mean temperature ± one standard deviation of 24.55 ± 2.08 °C.  

At both sites, insolation typically warmed the water, often more than 0.7 °C atop USS Arizona’s 

hull, but only 0.1-0.3 °C along the 10-m isobath.  Thermal stratification, measured as the 

temperature difference between the sensor on the hull (depth~3 m) and the temperature sensor 

along the 10-m isobath, ranged between 0 and 2.5 °C, which reflects a distinct thermocline in the 

harbor’s waters (Figure 4.9). This general trend of warmer water overlying cooler near-bed water 

causes the water column to be thermally stratified and stable, reducing interaction of the near-

bed waters with the surface waters due to density contrasts. 

Along the 10-m isobath, the variability in water temperature was greater off the starboard 

(northwestern) side of the hull between the USS Arizona’s hull and Ford Island.  In general, the 

near-bed water off the starboard (northwestern) side of the hull was slightly (0.02 ± 0.10 °C) 

warmer that off the port (southeastern) side of the hull (Figure 4.10).  The greater stability off the 

port (southeastern) side of the USS Arizona’s hull is likely caused by greater mixing due to 

currents, which act to minimize temperature fluctuations caused by insolation or submarine 

groundwater discharge.  We do not have information at this time that indicates that these 

processes are the cause of the temperature differences between the two sites. 

 

Salinity 

 

Over the period of study, the salinity at the site along the 3-m isobath ranged between 

16.78 PSU and 42.56 PSU, with a mean salinity ± one standard deviation of 34.33 ± 4.25 PSU. 

Salinity tended to correlate positively with water temperature. This correlation is clearly seen 

when probable large surface runoff or groundwater effluences are advected by the YSI Sonde 

during the winter months, causing the temperature and salinity to rapidly drop. Gradual increases 

back to prevent levels over the course of a few days, likely due to current-induced mixing, follow 

these sharp decreases. 
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Figure 4.9.  Differences in water temperature around the USS Arizona. TOP: Near-bed 

(10 m) and near-surface (3 m) temperatures and the resulting thermal stratification. 
BOTTOM: Concurrent water temperatures off the port and starboard sides of the hull 
and the resulting thermal gradient.  While both the port and starboard temperatures 

both follow the same long-term trends, note the greater fluctuations in water 
temperature off the starboard side; this likely results from less mixing of the water 

column off the starboard side. 
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pH 
 

Over the period of study, water pH at the site along the 3-m isobath ranged between 7.60 

and 9.10, with a mean pH ± one standard deviation of 8.04 ± 0.15. Most variability in pH is at 

daily timescales; pH tends on average to rapidly increase from approximately 7.9 at roughly 

09:00 each morning to more than 8.1 around 13:00, then decrease down to nominal levels of 7.9 

by 21:00 (Figures 4.10 and 4.11). This daily increase, which is often on the order of 0.05 to 0.35, 

suggests that pH levels at the study site are related to daily insolation-driven warming or 

insolation-driven Trade wind intensification and Trade-wind wave-induced mixing. 

 

Oxygen-Reduction Potential 

 

Over the period of study, the oxygen-reduction potential at the site along the 3-m isobath 

ranged between 150.0 mV and 397.2 mV, with a mean oxygen-reduction potential ± one 

standard deviation of 289.2 ± 50.6 mV.  Oxygen-reduction potential had an inverse relationship 

with pH and the percentage of dissolved oxygen during the summer months, with oxygen-

reduction potential decreasing during the daytime and increasing into the night, attaining it 

greatest values just before sunrise. However, during the winter months when temperature and 

salinity were more variable, oxygen-reduction potential had more variable positive relationship 

with pH and the percentage of dissolved oxygen, suggesting that changes in salinity due to 

precipitation and/or submarine groundwater discharge might be impacting the data (Figures 4.10 

and 4.11). 

 
Dissolved Oxygen 

 

Over the period of study, the dissolved oxygen levels in the water at the site along the 3-

m isobath ranged between 0% and 288.5%, with a mean dissolved oxygen level ± one standard 

deviation of 69.5 ± 58.8%. Similar to the pH levels, most variability in dissolved oxygen levels is 

at daily timescales; dissolved oxygen tends to rapidly increase at roughly 09:00 each morning, 

peak around 13:00, then decrease down to nominal levels by 21:00 (Figures 4.10 and 4.11). This 

daily increase of 5-20% suggests that dissolved oxygen levels at Arizona are related to daily  
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Figure 4.10.  Graphic illustrating positive correlation between tide, temperature, ph, and dissolved oxygen; 
and an inverse correlation with oxygen reduction potential on the USS Arizona over a several day period.
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Figure 4.11.  Phasing of pH, oxygen-reduction potential and dissolved oxygen relative to the time of day.  

These plots show how pH, dissolved oxygen and oxygen-reduction potential increase towards early afternoon 
and decline through the night into the early morning. 

 

 

insolation-driven warming or insolation-driven Trade wind intensification and Trade-wind wave-

induced mixing. 

 

Vertical Variability 

 

The temperatures during the vertical profiles taken in the early morning varied between 

27.83 °C and 28.72 °C, with the near-surface temperatures on average roughly 0.74 °C warmer 

than the near-bed temperatures. The salinities during these profiles varied between 33.47 PSU 

and 34.38 PSU, with the near-surface temperatures roughly 0.79 PSU less saline on average than 

the near-bed salinities. The dissolved oxygen levels during these profiles varied between 15.3% 

and 91.2%, with the near-surface dissolved oxygen levels on average roughly 41.1% higher on 

average than the near-bed dissolved oxygen levels (Figure 4.12). The temperatures during the 
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vertical profiles taken in the late afternoon varied between 27.85 °C and 29.51 °C, with the near-

surface temperatures roughly 1.32 °C warmer on average than the near-bed temperatures. The 

salinities during these profiles varied between 33.21 PSU and 34.35 PSU, with the near-surface 

temperatures roughly 0.91 PSU less saline on average than the near-bed salinities. The dissolved 

oxygen levels during these profiles varied between 11.7% and 104.4%, with the near-surface 

dissolved oxygen levels roughly 46.6% higher on average than the near-bed dissolved oxygen 

levels (Figure 4.12). 

While mean near-bed temperatures did not vary significantly between the early morning 

and late afternoon vertical profiles, it is quite apparent that not only did the mean near-surface 

water temperatures increase significantly, but that a thermocline stretching to 6 m below the 

surface warmed on average approximately 0.8 °C. Neither salinity nor dissolved oxygen showed 

significant variations in the mean vertical profiles taken in the early morning versus those taken 

in the late afternoon.  

 

DISCUSSION 

 

Water movement and water column properties combine to affect steel hull corrosion.  

Water movement contributes to increased steel corrosion through at least two mechanisms:  

mechanical abrasion and causing increased dissolved oxygen in the disturbed water.  The water 

movement data collected during this study suggest that the prevailing weather patterns, diurnal 

tides, and small, long-period swells that dominate Pearl Harbor likely have no extraordinary 

effects on hull corrosion.  The anomalous, high-amplitude, short-period modulations from the 

southeasterly (90º-150º) or northwesterly (270º-330º) directions, however, may differentially 

affect Arizona’s hull.  These swells are likely due to large vessels or possibly Navy tour boats 

moving past the Memorial, and may contribute to the increased deterioration and corrosion rates 

noted on the upper parts of the hull, in shallow water (see Chapter 5).  As indicated by the 

corrosion data, due to hull orientation, these anomalous waves have a greater impact on the port 

side of the hull than the starboard side.  In addition, greater current speed on the surface relative 

to the near bottom also contributes to increased corrosion in the shallower water (see Figure 4.3).  

The vertical velocity shear, caused by moving seawater of a given density, also imparts a vertical 

variation in current-induced force on the hull that is relatively greater on the port side than the  
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Figure 4.12.  Vertical profiles of temperature, salinity and dissolved oxygen off the 

USS Arizona dock.  These plots show how these parameters vary vertically from just 
below the water’s surface down to the sea floor and how the vertical variation in these 

parameters changes over the course of a day. 

 110



USS Arizona   Chapter 4 
 

starboard side of the ship (see Figure 4.4).  This vertical velocity shear is also reflected in the 

corrosion data, with hull metal loss greatest on the port side between the surface and 

approximately 20 ft. water depth, based on direct measurement of midship hull samples.  This 

differential corrosion is consistent with greater flow velocities on the port side.  Below 

approximately 20 ft. water depth, metal loss is nearly the same on both sides of the hull. 

With regard to the second variable, water column properties, it is unknown if acoustic 

backscatter has any direct effect on hull corrosion, but backscatter is likely a by-product of forces 

that do have an effect, such as current and other water movement.  Water temperature in Pearl 

Harbor is consistently greater near the surface than near the seafloor, which contributes to the 

higher corrosion rates measured in shallow water.  The temperature difference between the port 

and starboard sides of the ship is small enough that it likely has no effect on differential 

corrosion.  Salinity, pH, oxygen-reduction potential, and dissolved oxygen vary somewhat over 

the course of each day and throughout the year, but the long-term data from the YSI Sonde does 

not offer any comparative data that might address hull corrosion variability.  Vertical variability 

recorded during vertical profiling with the YSI Sonde and dissolved oxygen meter, however, is 

more illuminating.  Corroborating the long-term data recorded with the SonTek ADV and YSI 

Sonde, temperature was found to be warmer at the surface and cooler near the harbor bottom.  In 

an expected inverse relationship with temperature, salinity was slightly lower at the surface and 

higher near the bottom.  The most important factor recorded, however, is dissolved oxygen, 

which was found to be on average 41–46% higher near the surface than at the harbor bottom.  

This strongly contributes to the higher corrosion rates found in shallower portions of Arizona’s 

hull.  To determine if the same vertical variability in water column properties occurs inside 

Arizona’s hull as outside of it, comparative interior measurements were recorded.  These are 

discussed in the next section. 

 

INTERIOR DATA COLLECTION 

 

INTERIOR MEASUREMENTS, 2002-2004 

 

Environmental monitoring was conducted within Arizona’s interior cabins to determine 

internal environmental conditions.  Internal conditions can be compared to external conditions to 
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infer interior corrosion nature and rate.  These data are critical to developing a viable Finite 

Element Model that takes into account both interior and exterior hull corrosion.  Interior 

investigations began in 2002 and used an YSI dissolved oxygen meter to obtain dissolved 

oxygen concentration inside selected core drill holes after removal of steel hull samples (see 

Chapter 5 for details of core sample operations).  Investigations of interior spaces in 2003 used a 

VideoRay Remotely Operated Vehicle (ROV) equipped with a YSI 600XLM Multiparameter 

Sonde (a smaller version of the YSI Model 6600 Sonde described above) to measure 

temperature, salinity, pH, dissolved oxygen, and oxygen-reduction potential—with the exception 

of acoustic backscatter, the same parameters recorded externally (Figures 4.13 and 4.14).  This 

survey focused on second deck cabins accessible to the ROV via open portholes, as well as 

inside Barbette No. 3, which is accessible from the surface.  Subsequent investigations in 2004 

recorded environmental parameters in Third Deck spaces—although very few of these areas 

were accessible to the ROV. 

 

Operations 

 

Interior Dissolved Oxygen Measurements, 2002 

 

An YSI dissolved oxygen meter was used to obtain dissolved oxygen concentration 

inside selected core drill holes after removal of steel hull samples during 2002 sampling 

operations.  First, ambient seawater was measured on the exterior of the sample location.  Next, 

the dissolved oxygen probe was attached to the end of a 6 ft. section of PVC pipe and inserted 

into the hole after removal of a plug seal, which had been inserted into each drill hole after the 

core was removed.  The probe was inserted 1–2 ft. and the readings were allowed to stabilize 

before recording.  A total of five locations were sampled in this way. 

 

Interior ROV-based Measurements, 2003–2004 

 

 For ROV operations in 2003–2004, the YSI Sonde was used in profiling mode to take 

continuous measurements.  The VideoRay ROV manufacturers integrated the YSI Sonde with 

the ROV so that data could be received on the surface from the Sonde through the ROV tether,  
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Figure 4.13.  VideoRay ROV equipped with YSI Sonde outside on open porthole on USS Arizona’s 

Second Deck (NPS Photo by Brett Seymour). 
 
 

 
Figure 4.14.  VideoRay ROV conducting interior investigations on USS Arizona’s Second Deck  

(NPS Photo by Brett Seymour). 
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and the Sonde could be controlled from the surface via a laptop computer.  This allowed 

researchers to record separate data files for each location sampled.  In addition, a continuous log 

of ROV movements was recorded and the timestamp on the ROV video could be correlated with 

the timestamp on the YSI data stream to allow precise interpretation of ROV location within 

each cabin. 

 In total, 23 separate interior spaces were measured using the YSI Sonde-equipped 

VideoRay ROV.  These spaces included 20 cabins and hallways on the Second Deck accessible 

through a combination of open portholes, exterior hatches, and accessible bulkheads; two interior 

spaces on the Third Deck that are only accessible via vertical hatches, including one that can 

only be reached after a long run down a Second Deck hallway; and the interior of Barbette No. 3, 

which reaches down to the First Platform level (just below the Third Deck) (Figure 4.15). 

 

Results 

 

Interior Water Column Properties 

 

Interior water column properties collected include variations in temperature (ºC), salinity 

(PSU), pH, oxygen-reduction potential (mV), and dissolved oxygen (%).  Their ranges, 

variability and potential causes for their variability are discussed here.  In total, 9,203 

measurements were taken from Second Deck spaces; 2,160 measurements from Third Deck 

spaces, and 423 measurements at the First Platform level of Barbette No. 3. 

 

Temperature 

 

Temperatures recorded in Second Deck cabins varied from 26.3–27.5ºC, with an average 

of 27.2ºC; on the Third Deck, temperatures were steadier at 27.3–27.5ºC with a 27.4ºC average; 

inside Barbette No. 3 at the First Platform level, water temperatures were slightly cooler, ranging 

from 24.7ºC to 26.7ºC, with an average of 26.6ºC.  All interior temperatures fall within the 

seasonal and/or daily range of variability recorded on Arizona’s exterior. 
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Figure 4.15.  Interior spaces measured using the YSI Sonde-equipped VideoRay ROV. 

 115



USS Arizona   Chapter 4 
 

Salinity 

 

Inside Second Deck cabins, salinity ranged from 31.1–35.1 PSU, with an average of 34.0 

PSU; on the Third Deck, salinity was 30.2–32.4 PSU with a 32.2 PSU average; inside Barbette 

No. 3 at the First Platform level, salinity was slightly higher (likely due to less seawater 

exchange and evaporation from the open top of the barbette), ranging from 35.3–35.0 PSU, with 

an average of 34.3 PSU.  Like temperature, all interior salinity measurements fall within the 

long-term range of variability recorded outside Arizona’s hull, although the more enclosed Third 

Deck has a salinity that is slightly under 2 parts per thousand lower than more exposed interior 

spaces. 

 

pH 

 

Within Second Deck cabins, pH varied from 7.05–9.36, with an average of 7.69; on the 

Third Deck, pH was steadier at 7.90–8.07 with a 8.01 average; inside Barbette No. 3 at the First 

Platform level, pH was slightly higher, ranging from 8.18–9.36, with an average of 8.41.  All 

interior pH measurements are close to the seasonal and/or daily range of variability recorded on 

Arizona’s exterior, and are within the normal range of variability for seawater, although enclosed 

interior spaces have slightly higher pH levels. 

 

Oxygen-Reduction Potential 

 

Oxygen-reduction potential recorded in Second Deck cabins varied from 125–912 mV, 

with an average of 775 mV; on the Third Deck, oxygen-reduction potential readings were 

anomalous, ranging from -237–307 mV with a -129 mV average; inside Barbette No. 3 at the 

First Platform level, oxygen-reduction potential ranged from 281–733 mV with a 642 mV 

average.  Oxygen-reduction potentials fall well outside the seasonal and/or daily range of 

variability recorded on Arizona’s exterior, and (with the exception of the Third Deck readings) 

are much higher on average (see Chapter 5 for a more extensive discussion of oxygen-reduction 

potential) 
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Dissolved Oxygen 

 

The data from interior dissolved oxygen measurements through hull steel sample holes 

taken in 2002 are shown in Table 4.5.  Exterior measurements in ambient seawater before 

inserting the dissolved oxygen meter into the hull varied from 4.74 to 5.68 mg/L (Note:  mg/L is 

an alternative unit of measure for dissolved oxygen, but one not easily converted to percent 

saturation after the fact).  Once inserted into the hull through the core sample holes 

approximately 1–2 ft., the readings dropped, varying between 0.0 and 3.99 mg/L once they 

stabilized.  These interior spaces reveal a wide range of oxygen concentrations depending upon 

access to ambient seawater.  For the sample locations on the second deck (USAR-02-002 and 

USAR-02-008), which have some seawater exchange through open port holes, dissolved oxygen 

concentration dropped an average of 27% below ambient, exterior seawater measurements.  For 

the sample locations in the torpedo blisters (USAR-02-003, USAR-02-004, and USAR-02-009), 

the dissolved oxygen concentration varied from 2.47 to 0.0 mg/L depending on proximity to 

breaches in the otherwise sealed torpedo blister, 56–100% less than ambient exterior 

measurements.  Dissolved oxygen levels dropped to zero or near-zero in the two locations where 

the torpedo blister was completely sealed and had no seawater exchange.  

From the YSI Sonde-equipped VideoRay ROV, inside Second Deck cabins dissolved 

oxygen ranged from 45.0–104.1%, with an average of 64.0%; on the Third Deck, dissolved 

oxygen levels were 0.0–12.6% with a 4.1% average; inside Barbette No. 3 at the First Platform 

level, dissolved oxygen was 40.4–80.6%, with an average of 47.8%.  Interior dissolved oxygen 

measurements fall within the long-term range of variability recorded outside Arizona’s hull, 

although the Third Deck has much lower dissolved oxygen saturation than other interior spaces.  

In general, dissolved oxygen saturation decreases significantly as active seawater exchange is 

reduced.  This observation is significant when considering interior steel hull corrosion rates. 

 
Sample Number Location Exterior DO (mg/L) Interior DO (mg/L - lowest) 

USAR-02-002 Second Deck - Limited Seawater Exchange 4.74 3.99 

USAR-02-003 Torpedo Blister - No Seawater Exchange 5.52 0 

USAR-02-004 Torpedo Blister - No Seawater Exchange 4.82 0.01 

USAR-02-008 Second Deck - Limited Seawater Exchange 5.4 3.35 

USAR-02-009 Torpedo Blister - Limited Seawater Exchange 5.68 2.47 

Table 4.5.  Dissolved oxygen measurements inside the hull steel sample core holes. 
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Vertical Variability 

 

One of the more interesting observations is that interior cabin water on the Second Deck 

is stratified by a subtle thermocline of about 0.2ºC.  Dissolved oxygen levels, however, change 

significantly across this thermocline, from nearly 70% saturation above to about 50% saturation 

below the thermocline.  This observation was noted throughout all Second Deck cabins.  

Although interesting, this phenomenon likely has a negligible effect on overall corrosion, and the 

observation was not repeated on the Third Deck at the First Platform level. 

 

DISCUSSION 

  

Except for dissolved oxygen and oxygen-reduction potential, water column properties 

from interior spaces of USS Arizona vary only slightly from exterior conditions.  In general, 

Second Deck measurements vary little from Third Deck measurements.  The amount of variation 

observed is considered negligible for all variables, with the single exception of dissolved oxygen.   

Interior measurements of temperature, salinity, and pH all fall within the seasonal or daily 

variation recorded on Arizona’s exterior and the norms expected for Pearl Harbor seawater.  

Salinity was slightly less on average in the lower, more enclosed portions of the hull’s interior, 

while pH slightly higher; both of these would contribute to slightly lower corrosion rates.  

Significant differences in dissolved oxygen were observed on the hull’s’ interior, however, 

compared to baseline measurements outside the ship.  As mentioned previously, dissolved 

oxygen is also the most important variable contributing to steel corrosion in seawater (see 

Chapter 5), and this is therefore a significant observation.   The higher overall oxygen-reduction 

potential measurements may reflect lower overall active corrosion, which would be consistent 

with other observations. 

 

CONCLUSION 

 

In all, more than 1,000,000 external observations of currents, waves and water-column 

properties were collected per day for 393 days between November 2002, and April 2005, in Pearl 

Harbor.  Significant findings based upon these measurements and analyses include: 
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(1) Tides are of mixed, semi-diurnal type with a minimum, mean and maximum tidal range 

of 0.4 m, 0.6 m and 0.9 m, respectively. 

 

(2) Waves are not an important factor in the vicinity of USS Arizona’s hull.  Those observed 

were, while long period (~20 s), very small (order of cm’s) and likely due to open-ocean 

long-period swell.  Vessels passing close to the study site are likely responsible for the 

high-amplitude, low-period motions that were observed. 

 

(3) Flow along the 10-m isobath is dominated by semi-diurnal and diurnal tidal motions, 

which are modulated to some degree by what appears to be wind forcing during the mid- 

to late afternoon.  Flow at the surface is down-wind to the southwest.  Flow throughout 

most of the water column is primarily parallel to the USS Arizona’s hull at 0.01-0.02 

m/sec and net flow is to the northeast.  Flow closer to the seafloor, however, is weaker 

and more variable in direction. 

 

(4) Flow speeds are faster off the port side than the starboard side, and thus the water 

replenishment times on the port side of the hull are shorter than off the starboard side. 

Shear, both vertically in the water column and across the hull, was observed.  This results 

in vertical variations in replenishment times and current-induced forces on the hull.  This 

shear also likely increases vertical mixing of the water column. 

 

(5) Acoustic backscatter was generally higher in the winter months and during the falling 

tide, suggesting advection of material introduced into the northern sections of Pearl 

Harbor due to winter precipitation and its movement south past the hull by ebbing tidal 

currents.  Higher measurements of acoustic backscatter often occurred in the afternoon, 

suggesting increased trade wind-induced mixing or, perhaps, increased vessel activity, 

which facilitates water column mixing and fine-grained particulate resuspension. 

 

(6) Water temperatures were generally slightly higher (mean = 26.03 °C) and less variable 

(standard deviation = 1.17 °C) along the 10-m isobath than along the 3-m isobath (mean 
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= 24.55 °C, standard deviation = 2.08 °C).  A thermocline was often present in the 

harbor’s waters, with the shallower (3 m) and deeper (10 m) water temperatures often 

differing by more than 2 °C. Water temperatures along the 10-m isobath were generally 

cooler and less variable off the port side of the hull than off the starboard side, possibly 

due to faster replenishment times and greater mixing of the water column. 

 

(7) Salinity ranged from 16.78 PSU and 42.56 PSU, with a mean ± one standard deviation of 

34.33 ± 4.25 PSU.  Salinity appears to positively correlate with water temperature and 

suggests that Pearl Harbor’s waters are influenced by freshwater runoff or groundwater 

effluence in the winter months. 

 

(8) pH ranged between 7.60 and 9.10, with a mean ± one standard deviation of 8.04 ± 0.15 

and dissolved oxygen 0% and 288.5%, with a mean ± one standard deviation of 69.5 ± 

58.8%.  Both pH and dissolved oxygen tended to correlate with the daily insolation cycle, 

increasing during the morning into the early afternoon followed by decreasing through 

the night to minimum levels just before sunrise. 

 

(9) Oxygen-reduction potential ranged between 150.0 mV and 397.2 mV, with a mean ± one 

standard deviation of 289.2 ± 50.6 mV. Oxygen-reduction potential had an inverse with 

pH and the percentage of dissolved oxygen during the summer months and a positive 

relationship with pH and the percentage of dissolved oxygen during the winter months 

when temperature and salinity were more variable. 

 

(10) During the vertical profiling, near-surface temperatures were on average roughly 1.03 

°C warmer than the near-bed temperatures, near-surface temperatures were roughly 0.85 

PSU less saline on average than the near-bed salinities and near-surface dissolved oxygen 

levels were on average roughly 43.9% higher than the near-bed dissolved oxygen levels. 

 

These data provide us with a much clearer picture of the nature of and controls on the 

physical environment around USS Arizona’s hull.  The complexity of the physical environment 

surrounding and influencing Arizona is reflected in the number of interesting phenomena 
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observed during this study. The next step is to correlate these environmental aspects with active 

corrosion processes affecting Arizona to refine the predictive model of the ship’s deterioration. 

 On Arizona’s interior, in general, most parameters recorded with the YSI Sonde-equipped 

VideoRay ROV were very similar inside the ship as outside.  Temperature, salinity, and pH were 

all within a normal range of variability.  Dissolved oxygen and oxygen-reduction potential, on 

the other hand, varied significantly from baseline measurements outside the hull.  The most 

significant observation is that dissolved oxygen decreased to near-zero within interior spaces that 

do not receive active seawater exchange.  Most significantly, on the Third Deck, which has no 

direct access to exterior seawater except through a single vertical hatch, dissolved oxygen 

averaged only 4.1% saturated.  With the exception of a small portion of the First Platform 

accessible through Barbette No. 3, there is no access to any interior spaces below the Third 

Deck.  However, based on data from the Third Deck and within the torpedo blisters, which 

indicate that dissolved oxygen can reach 0.0% saturated in spaces that do not have seawater 

exchange, it is probable that Arizona’s interior spaces below the Third Deck have extremely low 

levels of dissolved oxygen, and may even be at 0.0% saturated.  Because all of Arizona’s original 

oil storage spaces are below the Third Deck, and the majority of Arizona’s remaining oil is likely 

still stored in those spaces, it is probable they are undergoing very low corrosion rates.  This 

topic will be discussed in more detail in Chapter 5. 

 121



USS Arizona   Chapter 4 
 

REFERENCES 
 
National Climate Data Center, National Oceanographic and Atmospheric Administration 

2005 NCDC Hourly Surface Climate Data for Hawaii, Online Dataset, 
http://www.ncdc.noaa.gov/oa/climate/climatedata.html#hourly 

 
North, N. A. and I. D. MacLeod 
 1987 Corrosion of Metals. In Conservation of Marine Archaeological Objects, edited by 

C. Pearson, pp. 68-98. Butterworth & Co., London. 
 
Storlazzi, C. D., M. A. Russell, M. D. Owens, M. E. Field and L. E. Murphy 
 2004 Dynamics of the Physical Environment at the USS Arizona Memorial: 2002-2004. 

U.S. Geological Survey Open-File Report 2004-1353, 
http://pubs.usgs.gov/of/2004/1353/. 

 
Storlazzi, C. D., M. A. Russell, M. K. Presto and J. E. Burbank 
 2005 Flow Patterns and Current Structure at the USS Arizona Memorial: April, 2005. 

U.S. Geological Survey Open-File Report 2005-1334, 
http://pubs.usgs.gov/sir/2005/1334/. 

 
 
 

 122

http://www.ncdc.noaa.gov/oa/climate/climatedata.html#hourly
http://pubs.usgs.gov/of/2004/1353/
http://pubs.usgs.gov/sir/2005/1334/



